Один из способов получения стали — варка ее в конверторе (большом ковше). В конце процесса плавки, чтобы получить расплав стали однородного состава и вывести на поверхность шлак (его температура плавления порядка 1000 °С, удельный вес — примерно в три раза меньше веса расплавленной стали), в жидкую сталь с температурой 1600 °С опускают мешалку — длинный толстый стальной стержень — и перемешивают ее (рис. 5.1). К сожалению, в процессе работы мешалка под действием теплового поля расплава быстро нагревается, размягчается и при температуре 1100 °С теряет свою прочность и перестает перемешивать расплав. Приходится часто менять мешалки, что усложняет работу и обходится дорого. Пробовали охлаждать мешалку, например, водой, но это оказалось слишком сложно и опасно: попадание воды в расплав стали приводит к взрыву. Решили изготовить мешалку из жаростойких металлов (вольфрама, молибдена и т.п.), но расчеты показали, что такая мешалка будет стоить слишком дорого. Как быть?
Для решения задачи используем АРПС.
Прежде всего определим основную функцию системы. Эта система создана для получения однородного состава расплава стали путем его механического перемешивания. Проанализируем ситуацию по шагам.
Шаг 1. Техническая система для получения однородного состава расплавленной стали путем ее механического перемешивания состоит из ковша, в котором варится сталь, расплава стали, шлака, мешалки и механизма, который держит мешалку, опускает ее в расплав и там перемещает. В процессе перемешивания в результате контакта мешалки с расплавом с температурой 1600 °С возникает нежелательный эффект (НЭ1) — нагрев и разрушение мешалки. Чтобы мешалка не разрушалась, можно использовать различные средства устранения (СУ). Рассмотрим эти средства и их возможные последствия — новые нежелательные эффекты (НЭ2).
Возможные средства устранения:
СУ1 — убрать мешалку вообще. При этом возникает НЭ2 — не будет перемешивания, т.е. не будет выполняться основная функция, что недопустимо. Следовательно, нужно будет изменить принцип действия системы — вводить другой способ перемешивания, например электромагнитным полем. (Иногда предлагают вращать ковш вокруг мешалки…)
СУ2 — устранить перегрев мешалки. Сделать это можно, если ввести устройство для охлаждения, например, водой. НЭ2 — сложность и опасность взрыва.
СУ3 — изготовить мешалку из жаростойких сталей. Тогда возникающий НЭ2 — высокая стоимость новой мешалки.
Анализ средств устранения (СУ1, СУ2 и СУ3) и возникающих при этом новых нежелательных эффектов показывает, что поиск решения проблемы может происходить в двух направлениях. При выборе СУ1 необходимо будет изменять принцип действия системы, или, как принято говорить, решать максимальную задачу. При выборе СУ2 или СУ3 принцип действия системы (перемешивание мешалкой) остается неизменным. В этом случае говорят о необходимости решать минимальную, или мини-задачу: вся система остается без изменений, а вредное качество (НЭ1) должно исчезнуть.
Вопрос о том, какую задачу и при каких начальных условиях решать, будет рассмотрен во второй части книги. Пока же отметим, что решение мини-задачи связано, как правило, с изменением значительно меньшего числа элементов, входящих в систему, и поэтому всегда предпочтительнее начинать с нее.
Рассмотрим вариант для СУ3 — замены мешалки из обычной стали на жаростойкую. НЭ2 здесь — недопустимо высокая стоимость. Составим схему задачи.
ОФ — получение однородного состава расплава стали.
ПД — механическое перемешивание мешалкой.
Состав системы — расплав стали, ковш, шлак, мешалка, механизм управления мешалкой.
НЭ1 — расплавление обычной мешалки.
СУ — использование жаростойкой мешалки.
НЭ2 — высокая стоимость.
Рассмотрим варианты технических противоречий в их крайних состояниях: