Мы ожидали, что отдаленные галактики будут выглядеть не так, как те, которые расположены рядом с нами. Свет от них провел в пути долгое время, поэтому они были младше и менее развиты, когда испустили тот свет, который теперь достиг нас. На той стадии еще не весь первоначальный газ образовал звезды. Эти эволюционные изменения происходят так медленно, что станут заметными только через миллиарды лет. Таким образом, чтобы понять общее направление этих изменений, нужно исследовать такие далекие галактики, чтобы их свет шел до нас несколько миллиардов лет.
Космический телескоп имени Хаббла, названный в честь первооткрывателя космического расширения, движется высоко над Землей, чтобы избежать искажающего эффекта атмосферы и сделать четкие фотографии очень далеких районов космоса. Приборы «Хаббла» настолько чувствительны, что при длинной выдержке позволяют увидеть плотно расположенные в небе тусклые пятнышки, даже если поле зрение так мало, что покрывает менее сотой доли размера полной Луны и при наблюдениях с помощью обычного телескопа этот участок выглядит как черное пятно. (Думаю, великолепные фотографии, сделанные космическим телескопом, оказали на общественное сознание такое же сильное воздействие, как первые снимки из космоса, сделанные в 1960-х гг., на которых была запечатлена Земля со всей ее хрупкой биосферой.) На фотографиях «Хаббла» мы видим тусклые объекты, принимающие самые различные формы, в миллиард раз тусклее, чем любая звезда, которую мы можем увидеть невооруженным глазом. Но каждый из них – это целая галактика размером тысячи св. лет, которая кажется такой маленькой и тусклой, потому что находится на огромном расстоянии. Эти галактики выглядят иначе, чем наши ближайшие соседи, потому что мы видим их сразу после того, как они сформировались: они еще не приняли форму устойчивых вращающихся дисков, как фотогеничные спиральные галактики, изображенные в большинстве книг по астрономии. Некоторые из этих далеких галактик состоят в основном из светящегося рассеянного газа, который еще не сгустился в отдельные звезды. Большинство дальних галактик выглядят значительно более голубыми по сравнению с ближайшими (после поправки на красное смещение, разумеется), потому что массивные голубые звезды, которые к настоящему времени уже умерли, еще светили в то время, когда свет покинул эти далекие галактики.
Эти изображения показывают нам, как такие галактики, как наш Млечный Путь, выглядели, когда зажглись их первые звезды. Когда мы смотрим на Туманность Андромеды, мы можем спрашивать себя, не наблюдают ли андромедяне за нами, используя телескопы еще более мощные, чем у нас. Может быть, они так и делают. Но в тех далеких галактиках никаких подобных достижений техники нет: мы смотрим на их очень примитивную стадию развития, еще до того, как прошло достаточно времени, чтобы многие звезды закончили свое существование. У них еще нет сложной химии; кислорода, углерода и других элементов очень мало для того, чтобы появились планеты, поэтому шанс на существование жизни минимален. Мы видим эти галактики на этапе, когда только закладывались основные строительные материалы для создания планетных систем. (Свет, который мы детектируем, на самом деле излучался в дальней ультрафиолетовой области спектра. Такое излучение невозможно увидеть глазом, и оно даже не проникает сквозь земную атмосферу. Но жесткое ультрафиолетовое излучение этих галактик переходит в красный свет к тому времени, когда добирается до нас.)
Самые отдаленные галактики имеют такое сильное красное смещение, что длина световой волны растянута больше чем в шесть раз: до такой степени должна была расшириться Вселенная с того времени, когда этот свет начал свой путь. Если допустить, что расширение сохраняется стабильным и галактики не ускоряются и не замедляются, то в то время, когда масштаб Вселенной составлял одну шестую своего сегодняшнего размера (расстояния – «штыри» в пространственной решетке Эшера – были в шесть раз меньше), ее возраст составлял одну шестую ее сегодняшнего возраста. На первый взгляд это утверждение может показаться спорным: не означает ли, что галактика должна удаляться в пять раз быстрее скорости света, если свету потребовалось пять шестых возраста нашей Вселенной, чтобы добраться до нас? Но противоречия в этом нет. Специальная теория относительности Эйнштейна (СТО) гласит, что ничто не может двигаться быстрее света относительно нас, когда
На самом деле ситуация сложнее, потому что скорость разбегания не постоянна. Сила притяжения, которую все во Вселенной прикладывает ко всему во Вселенной, вызывает замедление скорости, благодаря которому первые стадии космического расширения были относительно короткими. Но (об этом мы поговорим в главе 7) в дело может включиться еще одна сила, которая приведет к ускорению расширения. Вследствие этого до сих пор остается некоторая неуверенность по поводу того, как далеко во времени (или как далеко в пространстве) отстояли от нас эти отдаленные галактики: наиболее вероятное предположение – свет от них двинулся в путь, когда возраст Вселенной составлял примерно одну десятую от сегодняшнего.
Специалисты по космологии изучают «ископаемые остатки» прошлого: старые звезды, химические элементы, синтезированные, когда наша Галактика была юной, и т. д. В этом смысле они напоминают геологов или палеонтологов, пытающихся узнать об эволюции Земли и ее фауны. Но космологи имеют преимущество перед другими учеными, которые не могут проводить эксперименты и зависят от «исторических» доказательств. Направив свои телескопы на отдаленные объекты, космологи могут увидеть ту эволюцию, которую изучают: население далеких галактик, чей свет начал свой путь миллиарды лет назад, выглядит по-другому по сравнению с нашими ближайшими соседями. Из-за однородности в больших масштабах у всех частей Вселенной похожая история. Таким образом, по крайней мере с точки зрения статистики, эти отдаленные галактики должны быть похожи на то, как миллиарды лет назад выглядели наш Млечный Путь, Туманность Андромеды и другие соседние галактики.
Поле зрения телескопа – длинный тонкий конус, расширяющийся до границ обзора. Объекты, находящиеся на разном расстоянии, рассказывают нам об определенных эпохах в прошлом. Чем дальше расстояние, на которое мы углубляемся, тем глубже мы продвигаемся назад во времени. Это напоминает скважину, пробуренную сквозь следующие один за другим слои антарктического льда, чтобы узнать об истории климата Земли.
Космический телескоп «Хаббл» преследовали задержки запуска, ошибки в конструкции и превышения бюджета, но на сегодняшний день – лучше, как говорится, поздно, чем никогда, – он оправдал надежды, которые астрономы возлагали на него. Его расфокусированное зеркало было откорректировано первой пилотируемой экспедицией по обслуживанию в 1994 г., также были улучшены бортовые оптические датчики. Преодолевая все несчастья, «Хаббл» продолжает работать. Но не менее важны и усовершенствования более крупных наземных телескопов нового поколения. Их зеркала размером 8–10 м обеспечивают собирающую поверхность в 16 раз больше, чем у «Хаббла», и могут собрать намного больше света от очень тусклых отдаленных галактик. Два телескопа обсерватории Кека на горе Мауна-Кеа на Гавайях были первыми введенными в строй инструментами нового поколения. Теперь их стало больше. Самый впечатляющий из всех – это «Очень Большой Телескоп» (Very Large Telescope, VLT), комплекс из четырех телескопов, каждый из которых имеет восьмиметровое зеркало, установленный в чилийских Андах Европейской Южной обсерваторией.
Четкость изображений, полученных от этих наземных телескопов, ограничена искажением, вызванным турбулентностью в атмосфере (тем же самым процессом, из-за которого мы видим мерцание звезд). Эти границы можно раздвинуть или связав вместе два телескопа, совмещая полученные от них изображения, или с помощью так называемой адаптивной оптики, когда зеркало постоянно подстраивается и приспосабливается к тому, чтобы компенсировать флуктуации атмосферы.
Эти великолепные приборы сделали снимки Вселенной в момент формирования первых галактик. Возможно, первые звезды появились даже раньше в формированиях меньших, чем сегодняшние галактики, но они были слишком тусклыми, чтобы мы могли их увидеть. Позже такие скопления объединились в более крупные структуры. Скорость, с которой газ конденсируется в звезды, – это скорость «метаболизма» галактики. По всей видимости, своего пика она достигла, когда возраст Вселенной составлял четверть от сегодняшнего (хотя первый свет звезд появился гораздо раньше). Сейчас ярких звезд появляется не много, потому что большая часть газа в «материнских» галактиках уже задействована в более старых звездах.
По крайней мере, с таким сценарием согласно большинство специалистов по космологии. Для того чтобы уточнить детали, потребуется больше наблюдений и более полное понимание того, как образуются звезды. Целью этой работы является создание согласующегося сценария, который будет не только совпадать с тем, что мы знаем о сегодняшних галактиках, но и принимать во внимание все более и более детальные снимки того, как звезды выглядели и как создавались их скопления в начале истории Вселенной. Когда информации мало, она может соответствовать нескольким совершенно неправильным теориям, но, когда доказательств становится больше, мы должны остановиться на единственной картине, которая описывает, как все работает.
С увеличением расстояния наши знания увядают, и увядают быстро. В конце концов мы достигаем границы темноты, предела возможного для нашего телескопа. Там мы измеряем тени и рыщем среди призрачных ошибок измерений в поисках заметных объектов, которые будут более вещественными. Этот поиск будет продолжаться. Лишь только когда эмпирические источники истощатся, нам придется пройти в призрачное царство размышлений.
Это последние слова из классической книги Эдвина Хаббла «Царство туманностей» (Realm of the Nebulae, 1936). Современные достижения обрадовали бы, а возможно, и потрясли бы Хаббла. Эти успехи принес космический телескоп, названный его именем, а также огромные телескопы на Земле.
ДО ГАЛАКТИК
А что было в те еще более ранние эпохи, до того как начали формироваться галактики? Лучшее доказательство тому, что вначале все находилось в сверхсжатом состоянии, – это то, что межгалактическое пространство не является абсолютно холодным. Тепло, которое в нем присутствует, – «остаточное свечение творения» – обнаруживается как микроволновое излучение, то самое, что подогревает блюда в микроволновке, но гораздо слабее. Первое обнаружение космического фонового микроволнового излучения[21] в 1965 г. было самым важным событием в космологии со времен открытия расширения Вселенной. Более поздние измерения подтвердили, что реликтовое излучение имело отличительную черту: его интенсивность на различных длинах волн, представленная в виде графика, соответствует спектру теплового равновесного излучения того, что физики называют «абсолютно черным телом». Так выглядит температурная кривая, когда излучение приходит в равновесие с окружающей средой (как это происходит глубоко внутри звезды или плавильного горна, который сильно нагревали в течение длительного времени). Именно этого можно ожидать, если реликтовое излучение действительно является остатками «огненного шара», когда вся Вселенная была раскаленной, плотной и непроницаемой.
К настоящему времени самые точные измерения были проведены в 1990-е гг. с помощью спутника NASA COBE[22]. Когда экспериментаторы представляют свои результаты, они обычно изображают на графике «планки погрешностей», которые указывают на степень неуверенности в результатах, но для информации, полученной COBE, таких планок не могло быть, потому что они были бы короче, чем толщина кривой. Это действительно историческое измерение с точностью до одной десятитысячной убедительно подтвердило, что все в нашей Вселенной – в том числе все вещество, из которого состоят галактики, – когда-то было горячим газом с температурой выше, чем в ядре Солнца.
Сегодня средняя температура Вселенной составляет 2,728 градуса выше абсолютного нуля. Это, конечно, очень холодно (около –270 °С), но существует четкое понимание того, почему межгалактическое пространство по-прежнему содержит много тепла. Каждый м3 вмещает 412 млн квантов излучения или фотонов. Для сравнения: средняя плотность
Первичные горячие фазы продолжались недолго. Температура превышала миллиард градусов всего несколько минут. Примерно через полмиллиона лет она уменьшилась до 3000 °C – Вселенная стала чуть прохладнее поверхности Солнца, что явилось важным этапом процесса расширения. Перед этим все было таким горячим, что электроны были оторваны от ядер и двигались свободно. По мере снижения температуры они достаточно замедлились, чтобы присоединиться к ядрам; таким образом сформировались нейтральные атомы. Эти атомы не могли рассеивать тепло так эффективно, как свободные электроны на более ранних и более горячих стадиях. В течение последующего периода материя стала прозрачной; «туман» рассеялся. Во время расширения температура, в свою очередь, падала обратно пропорционально увеличению масштаба Вселенной (увеличению длины штырей в решетке Эшера). Реликтовое излучение, регистрируемое COBE, является следом той эпохи, когда наша Вселенная была сжата более чем в тысячу раз по сравнению с сегодняшним днем – при температуре 3000 °K вместо сегодняшних 2,7 °K и задолго до того, как появились галактики. Интенсивное излучение первоначального шара хотя и ослабело из-за расширения, но все еще наполняло всю Вселенную.
Часто используемая аналогия со взрывом вводит в заблуждение, поскольку создает представление о том, что Большой взрыв произошел в каком-то особом месте. Но, насколько мы можем судить, любой наблюдатель, находись он на Земле, в Туманности Андромеды или в самых далеких от нас галактиках, увидел бы одну и ту же модель расширения. Возможно, когда-то Вселенная и была сжата в одну-единственную точку, но у каждого есть равное право заявлять о том, что все началось именно с этой точки. Мы не можем соотнести источник расширения с каким-либо определенным местом в нынешней Вселенной.
Также неверно думать, что в первоначальной Вселенной расширение происходило из-за