Технология творческого мышления,

22
18
20
22
24
26
28
30

Одна из сложнейших проблем нашего времени — мусор, особенно в больших городах. Раньше отходы (как, впрочем, иногда и сейчас) сваливались в подъездах домов, и рабочие лопатами закидывали их в кузов самосвала. Потом появились баки, потом — специальные автомобили, в которых мусор засыпается в заднюю часть и прессом подается в основной бункер. Но все более широкое применение находит контейнерный способ, и автомобили оборудуются специальными гидроподъемниками. Ручной труд исчезает...

Закон увеличения уровня идеальности ТС при решении изобретательских задач позволяет сделать первый прыжок через область «пустых» проб: сформулировать идеальный конечный результат (ИКР). Конечно, получить ИКР в большинстве случаев не удается. Но сама постановка ИКР позволяет, как на острие иглы, сконцентрировать усилия и сузить зону поиска.

Помимо общих законов, определяющих идеологию ТРИЗ, генетический анализ систем, проведенный по патентному фонду, позволил выявить еще ряд закономерностей, связанных с созданием (синтезом) систем и их развитием. Большинство этих закономерностей уже встречались при решении задач.

Рассмотрим еще несколько примеров типичных изобретений и сделаем дальнейшие выводы.

Как делают мультики, знают все: их рисуют. На 1 м пленки — 52 рисунка-кадра. Десятиминутный фильм — это 300 м пленки и… 15 тысяч рисунков!!!

Есть предел скорости рисования. Нет предела творчеству. Вот Винни-Пух идет по дороге. Его тело слегка меняет свое положение, быстро шевелятся ноги. Разделим рисунок на части: дорога в лесу, тело Винни-Пуха, его ноги. Каждую часть изобразим отдельно на прозрачной пленке, а потом сложим их в «пакет»: ноги, тело, природа. Теперь можно «шевелить» каждый лист в отдельности, менять их.

И все-таки художников это не удовлетворяло: каждый раз рисовать даже часть объекта, в котором меняется еще меньшая часть, очень трудоемко. И появился способ воспроизведения силуэта для съемки мультипликационных фильмов, отличающийся тем, что с целью снижения трудоемкости процесса контур объекта образуют посредством наложения на магнитную панель наполненного ферромагнитным порошком шнура, а изменение силуэта при перемещении объекта относительно точки зрения получают путем передвижения шнура по панели (а.с. 234862).

Отличное изобретение, не правда ли? Нитка, пропитанная железным порошком, — вечный карандаш. Положили на панель — есть рисунок. Кончили съемку, смотали на катушку — и нет рисунка. А сколько бумаги экономится!

Итак, был способ изображения с помощью карандаша — стал с помощью магнитного шнура. Не просто стал, а с определенной целью, которая обязательно указывается в каждой формуле на изобретение. Появился даже коэффициент плотности цели. Он определяется отношением количества изобретений, направленных на достижение указанной цели, к общему числу изобретений, совершенствующих эту техническую систему. По такому коэффициенту легко судить о направлении развития системы.

Так, в 1970 г. было выдано а.с. 445611 на контейнер для транспортирования хрупких изделий (например, дренажных труб): в контейнере имеется надувная оболочка, которая прижимает изделия и не дает им биться при транспортировке. Еще раньше, в ноябре 1967 г., были выданы а.с. 349583, где надувной элемент работал в захвате подъемного крана, и а.с. 409875, где он прижимал хрупкие изделия в устройстве для распиловки. В январе 1972 г. выдано а.с. 534351, в котором для усиления и регулирования прижима внутрь мешка вводят ферромагнитный порошок и воздействуют на него магнитным полем. Почти пять лет — плата за незнание закона о том, что развитие ТС идет в направлении увеличения степени управляемости.

Еще один пример того, как изобретения, которые должны следовать одно за другим, разделены годами (хорошо хоть не десятилетиями!). В свое время был предложен гидроспособ добычи угля: в пласте бурят скважины, заполняют их водой и передают через нее импульсы давления — в результате пласт разрушается. И только через 7 (!) лет появилось а.с. 317797, в котором импульсы давления предлагается установить равными собственной частоте колебаний угольного пласта, т.е., попросту говоря, использовать явление резонанса. Производительность резко увеличивается. В первом изобретении не использован закон согласования ритмики отдельных частей системы. Сколько угля не добрали за эти семь лет? Сколько потрачено лишних энергии и труда?!

Еще примеры? Пожалуйста. До 1950-х гг. нефтяные скважины бурили только вертикально. Значит, для каждой скважины нужно было ставить свою отдельную вышку. Хорошо бы с одной вышки бурить несколько скважин. Но тогда надо бурить под углом, а конструкция бура — длинный жесткий цилиндр — этого не позволяла. «Сделаем бур, как трамвай — из двух вагонов!» — догадался изобретатель (а.с. 152842, март 1963 г.). Бур разделили на две части и, чтобы реактивная головка могла бурить наклонные участки скважины, соединили ее с конусом шарнирно. А в сентябре 1967 г. появилось а.с. 247159: «Способ направленного бурения скважин с применением искусственных отклонителей», отличающийся тем, что с целью регулирования угла набора кривизны ствола используют полиметаллический отклонитель и изменяют его температуру.

Первое изобретение — более-менее понятно: чем короче вагоны трамвая, тем круче угол, на который он может повернуть. А вот полиметаллический отклонитель...

Поставьте на стол два гвоздя равной длины: один — из цинка, другой — из вольфрама. И нагрейте их. Гвозди удлинятся, но по-разному: приращение длины цинкового гвоздя будет почти в семь раз больше приращения длины вольфрамового из-за разности коэффициентов линейного расширения. Если на их остриях раньше пластина могла лежать горизонтально, то теперь она будет лежать наклонно. Угол наклона зависит от свойств металлов (коэффициента линейного расширения) и температуры. Примерно так работает полиметаллический отклонитель.

Шарнир с газовой реактивной головкой или полиметаллический отклонитель? Второе решение явно изящнее. Переход к динамической системе в первом случае произошел на макроуровне (шарнир), во втором — на микро: сжимается и растягивается кристаллическая решетка вещества.

Открытие А.С. Поповым возможности передавать электромагнитные волны на расстояние создали радиотехнику, радиолокацию, телевидение, радиоастрономию и т.д., т.е. принципиально новые направления науки и техники. Для их внедрения нужно было решить целый ряд задач, в том числе найти способы возбуждения, управления и передачи электромагнитных колебаний. Плюс обратный процесс — прием сигналов, усиление, преобразование. Каждая из этих задач состоит из множества еще более мелких, детализирующих.

Необходимость возбуждения колебаний привела к созданию генераторов радиочастот. Возникла проблема стабилизации частоты — поддержания ее постоянной при изменении различных параметров (напряжения, температуры и т.п.). Совершенствуются катушки индуктивности и конденсаторы, вводится ручная, затем автоматическая подстройка, изобретаются хитроумные схемы включения. И все ради одного: устройство должно наилучшим образом выполнять свои функции. Стремиться к идеалу. Сработал этот принцип и в данном случае: вместо тяжелых катушек индуктивности и громоздких конденсаторов использовали кварцевый резонатор. Вместо электромагнитных полей — пьезоэлектрический эффект.

Вращая ручку радиоприемника в поисках нужной станции, мы меняем площадь взаимодействующих пластин конденсатора переменной емкости. При этом меняется частота, или длина волны. Способ грубый, ненадежный: между пластинами попадает пыль, проскакивают заряды, слышен треск. Куда более изящно менять емкость полупроводникового диода — варикапа — за счет изменения напряжения на его электродах. Вместо больших пластин и ручки с приводом — поверхность контакта двух полупроводниковых материалов и регулятор напряжения, что легко встраивается в микросхему. Так вместо «железок» и жестких, чаще всего механических связей между ними в технику приходят физические эффекты на уровне молекул, атомов, ионов, электронов... Происходит переход с макроуровня на микроуровень. И это — еще одна выявленная закономерность развития ТС, которая вошла в последние модификации АРИЗ-85 в виде шага 3.4: формулировка ФП на микроуровне (в АРПС — это шаг 6).

В этой главе мы сделаем самое большое, основополагающее обобщение.

Коротко вспомним, что уже было. Поиски методов мышления, с помощью которых можно было бы генерировать новые идеи, привели Г.С. Альтшуллера в патентный фонд — в библиотеку, где собрано описание продукта изобретательских идей. Анализ патентного фонда показал, что развитие каждой конкретной технической системы происходит не потому, что появился гениальный изобретатель, который захотел ее усовершенствовать, а потому, что его идея соответствует вполне объективным законам, которым подчиняется развитие всех технических (а в дальнейшем выяснилось — и всех искусственных) систем.