— Тогда почему он назвал ее «Principia Mathematica»?
— Различие между физикой и математикой было нечетким во времена Ньютона…
— А может быть, и в наше фремя, — сказал Руди.
— …и это прямо относится к тому, о чем я собираюсь говорить, — продолжал Алан. — Я про расселовские «Основания математики», в которых они с Уайтхедом начали абсолютно с
— М-м-м?
— Руди, возьми палку — да, эту — и следи за Лоуренсом. Когда глаза у него начнут вот так стекленеть, тыкай его в бок.
— Мы не в английской школе, тут так нельзя.
— Я слушаю, — сказал Лоуренс.
— Из «ОМ» следует абсолютно радикальная вещь — все в математике можно выразить определенной последовательностью символов.
— Лейбниц сказал это много раньше! — возмутился Руди.
— Ну, Лейбниц предложил символы, которые мы используем в дифференциальном исчислении, но…
— Я не про это!
— И он изобрел матрицы, но…
— И не про это тоже!
— И он немного занимался двоичной системой, но…
— Это софсем другое!
— Ладно, Руди, говори, о чем ты.
— Лейбниц изобрел базовый алфавит — записал набор символов для логических выражений.
— Ну, я не знал, что в сферу интересов герра Лейбница входила формальная логика, но…
— А как же! Он хотел сделать то же, что Рассел и Уайтхед, только не для одной математики, а для всего на сфете!