Жангада. Кораблекрушение «Джонатана»

22
18
20
22
24
26
28
30

Судья Жаррикес был прав, и наблюдение его заслуживало внимания. Двести первый, двести второй и двести третий знак в этом абзаце были буквой Е. Но вначале судья не заметил этой особенности.

— Что же это доказывает? — спросил Маноэль, не догадываясь, какой надо сделать из этого вывод.

— Это доказывает, молодой человек, что документ построен на числе. Это подтверждает, что каждая буква изменяется в зависимости от цифр этого числа и места, которое они занимают.

— Но почему же?

— Потому что ни в одном языке нет таких слов, где одна буква стояла бы три раза подряд.

Маноэль был поражен этим доводом и не нашелся ничего возразить.

— Если бы я заметил это раньше, — продолжал судья, — я избежал бы лишней траты сил и жестокой мигрени, от которой у меня раскалывается голова!

— Но скажите, сударь, — проговорил Маноэль, чувствуя, что теряет последнюю надежду, но все еще цепляясь за нее, — что вы подразумеваете под шифром?

— Назовем его числом.

— Назовем его как вам угодно.

— Я приведу вам пример, и это будет лучше любого объяснения.

Судья Жаррикес сел за стол, взял лист бумаги, карандаш и сказал:

— Давайте возьмем фразу, все равно какую, ну хотя бы вот эту: «У судьи Жаррикеса проницательный ум». Теперь я напишу ее, оставляя пробелы между словами, вот так:

У СУДЬИ ЖАРРИКЕСА ПРОНИЦАТЕЛЬНЫЙ УМ

Написав, судья, считавший, по-видимому, это изречение непреложным, посмотрел Маноэлю в глаза и сказал:

— А теперь я возьму наудачу какое-нибудь число, чтобы сделать из этой фразы криптограмму. Предположим, что число состоит из трех цифр, например 4, 2 и 3. Я подписываю это число 423 под строчкой так, чтобы под каждой буквой стояла цифра, и повторяю число, пока не дойду до конца фразы. Вот что получится:

У СУДЬИ ЖАРРИКЕСА ПРОНИЦАТЕЛЬНЫЙ УМ

4 23423 423423423 42342342342342 34

Затем, молодой человек, возьмем азбуку и будем заменять каждую букву нашей фразы той буквой, которая стоит после нее в алфавитном порядке на месте, указанном цифрой. Например, если под буквой А стоит цифра 3, вы отсчитываете три буквы и заменяете ее буквой Г. Итак, вот что мы получим:

У — 4 = Ч С — 2 = У У — 3 = Ц Д — 4 = И Ь — 2 = Ю И — 3 = Л

Если буква находится в конце алфавита и к ней нельзя прибавить нужного числа букв, тогда отсчитывают недостающие буквы с начала азбуки. Например, буква Я в алфавите последняя. Если под ней стоит цифра 3, то счет начинают с буквы А, и тогда Я заменяется буквой В.

Доведем до конца начатую криптограмму, построенную на числе 423 — взятом произвольно, не забудьте! — и фраза, которую вы знаете, заменится следующей: