КОНКУРС НА ПРЕМИИ № 6 откладывается до будущего номера, т. к читатели имеют сейчас в проработке задачи по конкурсам № 3 и № 5.
Кратчайший путь.
Задача № 4.
Задача не исчерпана по всем предложенным в ней вопросам. Даем решение лишь частично, в уверенности, что читатели не упустят сами довести решение до конца.
Для нахождения искомого пути надо развернуть все стены, потолок и пол комнаты в одной плоскости, напр., в плоскости пола. Затем в последней плоскости надо соединить обе данные точки прямой линией. И так как разверток может быть несколько, то из всех проведенных прямых надо выбрать наименьшую. На схеме показаны 4 возможных развертки, которые разнятся в положениях потолка (может ли быть разверток свыше четырех?) Для требуемого соединения точки
Это обнаружится яснее, если точку на потолке держать неизменно на одном и том же месте, а для точки на полу искать различные места. Пусть, напр., точки
Анализируя многие иные случаи, с учетом относительных размеров самой комнаты, можно определить все те частные условия, при которых число решений задачи будет доходить даже до шести.
Криптограмма.
Задача № 5.
«Своим светом освети чужую тьму и все тебе будет приятно».
(«Исповедь» М. Горького).
Из пятиугольника квадрат.
Задача № 6.
Из прямоуг. треугольника
Вторая, более трудная часть задачи, решена в построении, приведенном рядом —
В результате искомый квадрат выкладывается по нашему чертежу при разрезании данного пятиугольника всего на шесть частей (в премированных решениях дается деление от 7 до 13 частей). Неправильными математически, хотя и близкими по размерам, являются те решения, где сторона искомого квадрата приравнивается полусумме из стороны пятиугольника и его диагонали. Предлагаем любителям подсчетов определить цифровую разницу в таком неправильном решении сравнительно с верным.
Вследствие происшедшего запоздания в выходе №№ 3 и 5, —запоздания, независящего ни от редакции, ни от издательства, — этот конкурс вышел неудачным, так как подписчики не имели достаточно времени для решения предложенных задач. В конкурсе приняло участие всего 15 человек, из коих по 3 задачам получили зачеты 8 человек, по 2 задачам — 4 чел. и по 1 задаче — 3 чел. Оценка очками: трое — по 11 очков (по жребию премии 1–3), трое — по 9 очков, двое — по 7 очков, двое — по бочков, а остальные — менее 5 очков.
1-я премия. Издание «Красота форм в природе» — проф. Геккеля (атлас ценностью в 26 рублей) — Н. В. Успенский (Тула). — 2-я премия. «Демон» Лермонтова (худож. изд. ценностью в 8 руб.) — А. С. Базаров (Ленинград) — 3-я премия. «Наука о небе и земле». — Е. Игнатьева, (ценность изд. 5 р.) — С. И. Соколов (Москва). — 4-я премия. Сочинение проф. С. О. Грузенберга «Гений и творчество» — Б. В. Замбржицкий (Ленинград), — 5-я—10-я премии. Книги из числа указанных в условии конкурса: 5) В. А. Янковский (Ленинград); 6) Б. В. Смирнов (Одесса); 7) И. Б. Горцев (Ростов); 8) В. И. Лапин (Новгород); 9) X. Файфман (Киев); 10) И. Федоров (Минск).