Практически в любой момент две трети нашей планеты с большой вероятностью покрыты облаками. Неудивительно, что облака, как неотъемлемая часть ритмов Земли, решают за нас многие вопросы — от выбора обуви и вида транспорта до готовности подождать на улице. Они принимают за вас эти решения с большим удовольствием: потемневшее небо может оставить вас дома на несколько дней, а голубые небеса позволят наконец-то высадить луковицы тюльпанов. Они говорят с нами, а мы их слушаем, сами того не осознавая.
Метеорологам сложно моделировать и прогнозировать поведение облаков, однако они постоянно присутствуют в нашей жизни и обнадеживают нас. Они сформированы из водяного пара или кристаллов льда, решительно прильнувших к микроскопическим частицам в атмосфере, которые называют ядрами конденсации, — дыму, пыли и соли. Это происходит потому, что воздух перенасыщен и не может больше удерживать всю воду. Когда водяной пар конденсируется вокруг таких ядер, образуются облачные капли: соберите миллионы миллионов этих капель, и вы получите облако весом в сто крупных слонов (хотя в это и трудно поверить).
Несмотря на неимоверную тяжесть, вода в облаке распространяется на многие километры, и воздействие гравитации на что-то столь же малое, как одна капля воды, едва ощутимо. Лишь когда капля достигает определенного размера, ее веса хватает, чтобы выпасть в виде дождя на нас с вами. Иначе облака остаются там, а мы их рисуем. Нам нужно, чтобы они отражали и рассеивали солнечное излучение, улавливали тепло Земли и выпускали его обратно (эффект, противоположный охлаждению). Частицы в облаке одинаково рассеивают солнечный свет с любой длиной волн, и это придает им классический белый цвет. А такие параметры, как толщина облака или положение солнца на небе (например, когда оно только поднимается из-за горизонта), порождают отличия в этой пасмурной теме и дарят облакам их лирические вариации цвета — бесконечные оттенки белого и серого.
Облака отличаются друг от друга, начиная с поэтических названий — слоисто-дождевые, серебристые, перистые и линзовидные — и заканчивая красивыми, но эфемерными физическими формами и разрушительным потенциалом (вспомните муссонные дожди, ураганы и торнадо в море). Как только вы начнете замечать, насколько разнообразны и удивительны облака, они неизбежно разобьют ваше сердце (и сделают это так, что заодно заболит и шея).
Хоть кто-то знает, который час?
Несмотря на то что наши представления о нем продолжают меняться и развиваться, время по-прежнему остается одним из самых сложных для определения свойств нашей Вселенной, поскольку оно может быть и относительным, и мнимым, и реальным. На некотором фундаментальном уровне его вообще нет — по крайней мере, в том виде, в котором его представляем мы с вами. В обычной жизни многое из того, что мы называем временем, на самом деле является воспоминаниями или ожиданием будущего.
Представители древних цивилизаций измеряли время при помощи таких явлений, как ежегодный выход Нила из берегов или тени разной длины, отбрасываемые солнечными часами. Современное понимание основано на общей теории относительности Эйнштейна, в которой время является лишь координатой и не всегда течет с одинаковой скоростью. Время — это не просто линия, оно существует в поле пространства-времени в четырех измерениях.
Время не симметрично — скорее, ему присущи асимметрия и одностороннее направление. В 1927 году британский астроном Артур Эддингтон придумал понятие «ось времени». Он осознал, что, если бы время было симметричным, мир стал бы совершенно бессмысленным. Такая бессмысленность не сразу очевидна. Например, если воспроизвести в обратном порядке видеозапись планет, вращающихся вокруг Солнца, нам будет сложно отличить ее от оригинального видео. На записи все будет соответствовать законам физики. Но если воспроизвести задом наперед видео, на котором книга падает на пол, будет казаться, что книга падает вверх, а это абсурд. Мы помним прошлое, но мы не можем помнить будущее.
Термин «ось времени» (в термодинамике ее также называют стрелой времени) имеет прямое отношение ко второму закону термодинамики — одному из четырех законов, открытых в XIX веке, определяющих отношения между теплом, работой, энергией и температурой. Этот закон гласит, что энтропия может только увеличиваться в замкнутой системе, где замкнутая система — это наша Вселенная, а энтропия — мера хаоса. С течением времени энтропия увеличивается, и, хотя мы не можем измерить время с помощью энтропии, мы знаем, что энергия во Вселенной медленно, но верно движется к окончательному хаосу. Вещи не становятся аккуратнее, и мы не можем вернуться ко вчерашнему дню. Так второй закон термодинамики случайным образом определяет направление во времени.
Есть другие оси времени, которые различаются по своей связанности друг с другом: космологическая, которая указывает направление расширения Вселенной; излучающая стрела времени, включающая расширяющиеся наружу волны источника; казуальная стрела, связанная с причиной, предшествующей следствию, и квантовая стрела, которая сообщает о симметрии времени и связана со знаменитым уравнением Шрёдингера (при этом никто не знает, как эта стрела связана с остальными). Есть и психологическая стрела: мы воспринимаем время как движение от известного прошлого к неизвестному будущему.
В культурном отношении организация времени бывает разной, и это прямо влияет на наш опыт. В одних языках прошлое «располагается» позади человека, а будущее — впереди, но в других языках, наоборот, прошлое располагается впереди, а будущее — позади. Возможно, причина в том, что прошлое можно увидеть, а чтобы мы видели объект, он должен быть перед нами. В некоторых языках время воспринимается как пройденное расстояние, в других — как растущий объем (длинный день, полный день). В английском мы размышляем о времени в линейных терминах, слева направо. Носители китайского языка используют слова «над» и «под», когда говорят о времени. В греческом языке время может быть большим и маленьким. Мы так легко ошибаемся и принимаем слово за объект или явление, которые оно обозначает.
Но это не страшно, потому что, когда мы восхищенно разглядываем ночное небо, мы смотрим прямо в прошлое. Свет перемещается со скоростью 299 792 458 метров в секунду, но расстояние так велико, что он прибудет в пункт назначения, только когда мы уже предадимся ностальгии. Верхняя часть вашего тела стареет быстрее, чем ноги, потому что с увеличением гравитации время замедляется. Гора стареет быстрее, чем дно океана. И будь вы внизу или слева, на северо-востоке или позади меня, и как бы вы ни называли день, который наступит после завтрашнего, — я уверена: когда мы договоримся встретиться между порядком и хаосом, вы придете вовремя.
Почему Луна не падает
В нашей Солнечной системе полно взаимного притяжения. Называйте это как хотите: удачным моментом, гравитацией, любовной историей, которая никогда не случится (в основном это гравитация).
Что касается Луны, ее интересует только Земля. Земля притягивает Луну, когда она вращается вокруг нас, воздействуя на нее центростремительной гравитационной силой, которая идеально уравновешивается тем, что Луна притягивает нас при помощи центробежной силы, действующей в противоположном направлении. Луна, затерянная в собственном мире, движется со скоростью 3683 километра в час. Объекты в космосе, если им не мешать, предпочитают продолжать движение в том же направлении, спасибо за беспокойство (это явление называется инерцией).
Именно эта игра на законах физики (скорость Луны, равное притяжение в двух направлениях) гарантирует, что Луна никогда не покинет нас (хотя она постепенно отдаляется от нас со скоростью 3,8 сантиметра в год). Эти магические на вид силы действуют, потому что все, что имеет массу (планеты, звезды), создает кривую в пространстве-времени вокруг себя. Поскольку Земля больше, кривизна в пространстве-времени, которую она создает, достаточно велика, чтобы воздействовать на Луну и «приказывать» ей двигаться по орбите вокруг нас. Я полагаю, что Луна не против, потому что она не может глаз от нас отвести.
Классификация
Все живые организмы можно объединить в группы на основе простых общих характеристик. Дальше эти группы можно делить на более конкретные подгруппы. Этот процесс называется таксономией (от греческих корней taxis — «класс» и nomia — «метод»). В основе современной классификации всех живых существ лежит Systema Naturae, составленная шведским ботаником Карлом Линнеем в 1735 году. Мы по-прежнему называем ее классификацией Линнея, хотя со временем система сильно изменилась: от первоначальной идеи ученого о «минеральной» группе быстро отказались.
Сегодня мы классифицируем каждый организм на разных уровнях: домен, царство, тип, класс, отряд, семейство, род и вид (вид — наименьшая и наиболее точная категория). Мы, например, принадлежим к классу млекопитающих, отряду приматов и семейству гоминидов. Эта классификация ведет к отдельным научным названиям из двух частей, которые даны каждому живому существу, — к «биномиальной номенклатуре», в которой указываются род и видовые группы. Эти названия всегда указывают курсивом, причем первое слово пишется с заглавной буквы, а второе — со строчной. В нашем случае это
Метод классификации Линнея основан на сходстве между вещами, а не на филогении или эволюционных отношениях, хотя есть и другие системы, например кладистика, основанные на генетике и чертах, которые можно проследить до ближайшего общего предка (см. «Митохондриальная Ева»). Такие системы включают в себя более традиционную таксономию, но их главная цель — реконструировать эволюционную историю. Любопытно, что классификация как новых, так и старых видов часто приводит к спорам между учеными, в ходе которых они жонглируют названиями на латыни, потому что многие виды прячутся между строк, не подпадая под четкие критерии определений настолько, чтобы их можно было однозначно отнести к той или иной группе.