Она смеется, как мать

22
18
20
22
24
26
28
30

Просмотрев исследования человеческих заболеваний, Грюнеберг также не обнаружил подтверждения гипотезы Лайон. «Можно заключить, – торжественно вынес он приговор, – что поведение генов, находящихся на половых хромосомах у человека (равно как и у других млекопитающих), не подтверждает гипотезу Лайон»[782].

Другие ученые были поражены безжалостностью Грюнеберга. Год за годом, статья за статьей, конференция за конференцией он продолжал свои нападки. Его стыдились даже ближайшие коллеги, потому что он отказывался принимать накапливающиеся доказательства лайонизации. В 1963 г. появилось исследование, ставшее одним из самых важных для подтверждения гипотезы Лайон. Генетик Рональд Дэвидсон из Университета Джонса Хопкинса изучал с коллегами заболевание крови под названием «дефицит глюкозо-6-фосфатдегидрогеназы» (Г6ФД)[783]. Оно вызывается мутацией в X-хромосоме, нарушающей структуру белка Г6ФД, вследствие чего происходит разрушение эритроцитов. Мужчины, унаследовавшие одну копию мутантного гена, всегда страдают от этой болезни. У женщин, если на второй X-хромосоме есть нормальная копия гена, симптомы могут не проявиться.

Дэвидсон проверил отдельные клетки кожи у женщин – носителей этой мутации. Он обнаружил, что в одной половине клеток была инактивирована X-хромосома с испорченным геном, а в другой – с нормальным. В целом клетки женщин производили достаточное количество нормальной Г6ФД, чтобы их организмы были здоровы.

Грюнеберг не принял доказательства Дэвидсона. Более того, он начал нападать и на защитников Лайон. Исследовательница позже вспоминала, что из-за Грюнеберга эти десять лет ее жизни были сложными и тоскливыми. Тем не менее она сохранила свой невозмутимый здравый смысл. К 1970-м гг. ученые перестали сомневаться, существует ли лайонизация. Теперь их интересовало, как она происходит.

__________

Ответ на этот вопрос нашелся среди множества молекул, кишащих вокруг нашей ДНК. Эти молекулы – РНК и белки – контролируют, какие гены сделать активными, а какие выключить. Одни молекулы выключают гены, плотно накручивая нити ДНК вокруг белковых катушек. Другие, наоборот, разматывают эти нити, предоставляя доступ к ДНК молекулам, которые считывают генетическую информацию. Некоторые белки прикрепляются к генам, выключая их на то время, пока сами присоединены. А поскольку клетка способна синтезировать много таких белков, то стоит одному отсоединиться, как другой сразу же занимает его место. Кроме того, клетка может выключать гены надолго с помощью надежного молекулярного предохранителя. Это выключение, которое называется метилированием, иногда сохраняется намного дольше того периода времени, что существует сама клетка. Когда клетка делится, дочерние достраивают предохранители по материнскому образцу.

Целый ряд ученых направил всю свою научную деятельность на поиск молекул, которые выключают X-хромосому[784]. Благодаря их усилиям на X-хромосоме был обнаружен участок (его назвали Xic[785]), на котором находятся несколько важных генов. У самок в каждой клетке на ранних стадиях развития эмбриона две X-хромосомы направляются друг к другу, и их Xic-области встают рядом. Между парой Xic-участков скапливаются определенные молекулы, которые начинают дрейфовать от одного к другому, что по сути является молекулярным аналогом детской считалочки «эники-беники». В какой-то момент они прикрепляются к одному из двух Xic-участков и запускают работу генов, выключающих целую X-хромосому.

Один из генов, который они активируют, называется xist. Клетка использует его, чтобы создавать длинные змееподобные молекулы РНК. Они скользят вдоль Х-хромосомы в поисках места, за которое могут зацепиться. Пока один конец Xist-РНК захватывает хромосому, другой цепляет подходящие белки-помощники. Вместе они закручивают X-хромосому до тех пор, пока она не превратится в компактный комочек ДНК. При этом другая X-хромосома подавляет свой ген xist и остается активной.

Каждая клетка на ранних этапах развития эмбриона самки случайным образом определяет, какая из X-хромосом будет инактивирована подобным образом[786]. Когда клетка делится, она аккуратно распаковывает выключенную хромосому, чтобы сделать с нее копию, а затем опять ее сворачивает. Такая X-хромосома похожа на ящик со старой посудой, который вы перевозите с квартиры на квартиру, ничего не используя из его содержимого.

Сейчас мы можем наблюдать лайонизацию не только на молекулярном уровне, но и в масштабе всего организма. В 2014 г. Джереми Натанс и его коллеги из Университета Джонса Хопкинса выяснили, как можно заставить светиться активные X-хромосомы[787]. Они встроили в X-хромосому мыши ген, который кодирует белок, светящийся красным при добавлении определенного вещества. Другую линию мышей они создали со светящимся зеленым белком. Затем они скрестили мышей и получили пометы с мышатами, у которых была «зеленая» хромосома от одного родителя и «красная» от другого. Когда исследователи добавили необходимые вещества в разные части организма мыши, то клетки засветились подобно елочной гирлянде. Каждая клетка оказалась либо красной, либо зеленой – в зависимости от того, какая хромосома молчала.

Соседние клетки нередко светились разными цветами. Однако, когда Натанс подался назад, чтобы взглянуть с большего расстояния, он увидел другую картину. Благодаря чистой случайности в одних больших группах клеток работала в основном отцовская X-хромосома, а в других – материнская. Этот дисбаланс мог затрагивать целые органы. У некоторых мышей одно полушарие мозга было в основном красным, а другое – зеленым. Были те, у кого в сетчатке левого глаза работала X-хромосома отца, а правого – матери. Иногда одна из вариаций преобладала по всей мыши. У некоторых животных во всем теле оказывалась выключена X-хромосома одного из родителей.

Бóльшая часть исследований X-хромосом была посвящена изучению болезней, которые с ними связаны. Для мужчин наличие единственной X-хромосомы означает, что у них нет надежды спастись от мутации с помощью резервной рабочей копии. В результате многие наследственные заболевания, связанные с X-хромосомой, поражают почти исключительно мужчин. Например, белок дистрофин необходим для правильной работы мышц, и так сложилось, что ген этого белка лежит в X-хромосоме. Мышечная дистрофия Дюшенна – заболевание, ослабляющее мышцы в разных частях тела, – угрожает почти всегда только мальчикам. Они наследуют ее от своих ни о чем не подозревающих матерей, которые не страдают от мутации, потому что у части мышечных клеток достаточно дистрофина, чтобы сохранялась сила мышц. Между тем женщины сталкиваются с другими проблемами, если выключенные X-хромосомы становятся активными и, таким образом, нарушается баланс белков.

Натанс с коллегами полагают, что лайонизация имеет и положительную сторону. Она может расширить наследственно обусловленные возможности у женщин. Активность разных Х-хромосом в разных нейронах мозга может способствовать неодинаковым типам ветвления нейронов. Сила мозга человека заключается в его разнородности: разные типы нейронов, разные связи, разные нейромедиаторы. Лайонизация может еще сильнее увеличить вариабельность женского мозга.

На Рождество 2014 г. Лайон насладилась праздничным обедом и с удовольствием выпила стаканчик хереса на сон грядущий. К этому времени ее давно уже с большими почестями проводили на пенсию. В 1998 г. Кембриджский университет провел специальную церемонию по присуждению ей официальной степени взамен номинальной. Совет медицинских исследований построил центр, названный в ее честь. Американское общество генетиков учредило медаль Мэри Лайон, ежегодно вручаемую выдающимся генетикам. Биолог Джеймс Опиц сокрушался, что это «слишком малые почести для того, кого большинство моих знакомых считают достойным Нобелевской премии». Вздремнув в рождественский вечер, Лайон не проснулась – она умерла во сне. Опиц надеется, что в последние минуты у нее на коленях сидела живая демонстрация лайонизации – ее черепаховая кошка Синди.

__________

Мэри Лайон сделала гораздо больше, чем просто показала, как женщины живут с двумя X-хромосомами. Она дала нам представление о том, какими способами наследственность работает внутри нашего организма. Ее теория объясняет, каким образом клетки могут зафиксировать состояние, в котором работают одни гены и не работают другие, и передать его своим потомкам. Оказывается, это позволяет клеткам на начальных этапах развития эмбриона превращаться в различные ткани и органы. За те десятилетия, что прошли со времени новаторской работы Лайон, ученые выяснили и дополнительные этапы этого процесса[788]. Путешествие, которое начинается с зачатия, продолжается через эмбриональное развитие и длится до конца наших дней.

В момент оплодотворения, когда сперматозоид сливается с яйцеклеткой и загружает в нее свой набор хромосом и других молекул, включаются определенные гены и зигота становится тотипотентной клеткой. Это значит, что она имеет возможность развиваться по-разному. Одна-единственная клетка зиготы способна стать любой клеткой организма и даже плаценты. Когда зигота делится, получаются две новые тотипотентные клетки, затем четыре. Если врач извлечет одну из этих тотипотентных клеток и поместит в чашку Петри, она сможет развиться в целый эмбрион с плацентой.

Другими словами, данные клетки унаследовали от материнских не только ДНК, но и их тотипотентность. Это состояние передается от одного поколения клеток к другому благодаря молекулам, плавающим вокруг ДНК и определяющим, какие гены клетка использует, а какие подавляет. Несколько главных генов (олигогенов) создают мощные белки, каждый из которых удерживает сотни других генов во включенном или выключенном состоянии. Главные гены также поддерживают работу друг друга с помощью петель обратной связи[789]. Один ген активизирует второй, который включает третий, а тот, в свою очередь, поддерживает работу первого. Когда тотипотентная клетка делится, ее дочерние клетки наследуют ту же сбалансированную систему белков. Эти молекулы продолжают управлять ДНК в двух новых клетках, поэтому новая клетка наследует родительскую тотипотентность[790].

Тотипотентные клетки могут поддерживать этот тонкий баланс в течение нескольких делений. Но затем каждая новая клетка теряет свою тотипотентность, диапазон ее будущих возможностей сужается. Клетки внешнего слоя стремятся образовать плаценту. Другие клетки, образующие скопление внутри внешнего слоя, могут стать только частью самого эмбриона. Теперь они не тотипотентные, а плюрипотентные, но перед ними все еще несколько разных вариантов будущего.

Эти клетки меняют свои свойства, потому что у них перестраивается система, состоящая из генов и белков. Синтез белков с главных генов в тотипотентной клетке не идет так гладко, как на конвейере. Иногда эта молекулярная машинерия застопоривается, и создание белков замедляется. Иногда она ускоряется, и происходит резкое увеличение содержания этих молекул.

Такие колебания могут выводить из строя петли обратной связи в клетке[791]. Nanog – один из главных генов в тотипотентной клетке – удерживает многие гены выключенными. Если клетка не произведет достаточного количества белка NANOG, подавленные гены активируются и выключат сам ген nanog. Когда эти генетические сети перестроятся, они уже не смогут вернуться в прежнее состояние. Клетка превратится из тотипотентной в плюрипотентную.

Плюрипотентные клетки продвигаются дальше по ландшафту Уоддингтона, попадая в еще более глубокие канавки и сужая еще сильнее свои возможности. Случайные колебания синтеза белков вместе с сигналами от соседних клеток помогают им двигаться вперед. Плюрипотентные клетки оказываются в одном из трех зародышевых слоев. После того как клетка превратится в часть мезодермы, она потеряет шанс стать фрагментом одного из других зародышевых листков, чтобы участвовать в создании глаза или легкого. И с каждым новым сужением возможностей все сильнее работает долгосрочная регуляция ДНК с помощью метилирования генов. Клетки выключают многие свои гены настолько глубоко, что те более не имеют шансов стать включенными снова. Генетические сети, которые определяют характерные свойства клетки кости, мышцы или кишечника, становятся надежнее и противостоят случайным колебаниям содержания белков. Когда такие клетки делятся, их потомство гарантированно относится к тому же типу, с тем же метилированием и теми же участками ДНК, намотанными на белковые катушки.