Она смеется, как мать

22
18
20
22
24
26
28
30

Как Тривз ни старался, он так и не смог поставить диагноз Меррику. Он пригласил специалистов, которые предположили у Меррика расстройство нервной системы. Любопытство Тривза не утихло со смертью Человека-слона. Он сделал гипсовые слепки большей части тела Меррика, очистил и выварил его кости. Тривз осмотрел огромные наросты на скелете Меррика и пришел к выводу, что это не опухоли. Никто в семье Меррика не страдал таким заболеванием, поэтому маловероятно, что оно было наследственным. Самое удивительное, что эти наросты и деформации оказались разбросанными по всему телу, да к тому же случайным образом. При этом остальные участки оставались абсолютно нормальными.

Случай Меррика, линии Блашко и «винные пятна» на коже – все это яркие примеры мозаицизма, однако их истинная природа десятилетиями оставалась скрытой. Отчасти это было связано с отсутствием необходимых научных методик, но имелись и другие причины. Когда ученые исследовали наследственную изменчивость между людьми, они очень мало задумывались о наследственной изменчивости внутри конкретного человека.

А чем еще можно объяснить, что уже в далеком 1902 г. один ученый правильно определил рак как разновидность мозаицизма, но об этом забыли на долгие годы и лишь значительно позже подтвердили, что он был прав?

__________

В конце XIX в. Теодор Бовери провел целый ряд экспериментов с хромосомами, оставив тем самым свой след в истории науки[814]. В частности, его исследования явно указывали на то, что именно в хромосомах расположены наследственные факторы. Значительную часть своей работы Бовери выполнил с морскими ежами на морской зоологической станции в Неаполе. Он аккуратно вводил сперматозоид морского ежа в яйцеклетку, а затем наблюдал ее развитие и удвоение хромосом при каждом делении. Через несколько лет исследований у Бовери и его жены Марселлы возникла идея нового эксперимента. Они задумались, что произойдет, если в яйцеклетку морского ежа ввести два сперматозоида, а не один. Оказалось, что получится хаос.

Лишняя ДНК из второго сперматозоида перегружает оплодотворенную яйцеклетку так, что та не может поровну распределить имеющиеся хромосомы. Когда такая яйцеклетка делится, некоторые дочерние клетки оказываются с бóльшим числом хромосом, чем другие. (Ряд клеток в итоге остается вообще без них.) Такие сбитые с толку дочерние клетки продолжают копировать свои хромосомы и делиться. В конце концов они распадаются на зародышевые фрагменты, и некоторые из этих клеточных скоплений продолжают развиваться. Одни становятся здоровыми личинками морского ежа, а другие – уродливыми кусочками ткани.

Обозревая весь этот хаос, Бовери задумался, не похоже ли это на рак. В конце XIX в. биологи, рассматривавшие опухолевые клетки под микроскопом, заметили, что хромосомы в них имеют нетипичную форму. Но их не удавалось разглядеть настолько хорошо, чтобы понять, в чем же именно отличия. Однако ученые видели достаточно, чтобы предположить, что хромосомы играют какую-то роль в возникновении рака.

Пока Бовери наблюдал за вышедшими из-под контроля клетками морского ежа, его осенила гениальная идея. Чтобы нормально расти, рассуждал он, клетки должны унаследовать тот же набор хромосом, который был у их предков. Если этот процесс по каким-то причинам нарушен, то клетка в итоге может получить слишком много или слишком мало хромосом. Большинство таких мутантных клеток погибнет. Но иногда они начинают интенсивно размножаться. Их дочерние клетки наследуют тот же ненормальный набор хромосом и продолжают делиться. В результате получается опухоль.

Выдвинув эту гипотезу, Бовери встретил сильное сопротивление. «Когда я изложил свои мысли исследователям, специализирующимся в этой области, я столкнулся с таким недоверием, что отказался от этой идеи», – писал он позже[815]. Бовери отложил свою концепцию на 12 лет и обнародовал ее только в 1914 г. в своей книге «К вопросу о появлении злокачественных опухолей» (Zur Frage der Entstehung maligner Tumoren). Но и тогда его идеи не встретили понимания. Бовери умер на следующий год, так и не узнав, на его ли стороне оказалась истина.

И только к 1960 г. изучение хромосом достигло такого уровня, что специалисты смогли проверить гипотезу Бовери. Американские ученые Дэвид Хангерфорд и Питер Ноуэлл обнаружили, что у людей, страдающих от разновидности рака, которая называется «хронический миелоидный лейкоз», отсутствует значительный фрагмент хромосомы 22. Оказалось, что в результате мутации этот кусочек переместился на хромосому 9. И такое хромосомное изменение превратило клетки в раковые[816].

Как и ранее немецкому ученому, американским исследователям удавалось замечать только крупномасштабные изменения в хромосомах. У следующих поколений ученых появились технологии, позволяющие им значительно подробнее изучать ДНК в раковых клетках, секвенируя целые опухолевые геномы[817]. И при более пристальном взгляде обнаружилось, что здоровую клетку могут превратить в раковую гораздо меньшие перемены, чем те, что наблюдали Хангерфорд и Ноуэлл.

Здоровые клетки производят белки, не позволяющие клетке стать раковой. Потеря короткого фрагмента ДНК или ошибочное прочтение всего лишь одного основания может отключить эту защиту, и тогда клетки начнут безудержно делиться. К примеру, некоторые гены отвечают за производство белков, регулирующих скорость роста и деления клеток. Выключение одного из них уподобится отказу тормозов в машине, мчащейся вниз по склону. Последующие мутации смогут подтолкнуть потомков этой клетки ступить на путь к раку. Они окажутся способными сделать предраковые клетки невидимыми для иммунной системы, которая занимается, в частности, непрерывным поиском новых опухолей. Им удастся заставить клетки стимулировать прорастание кровеносных сосудов в этом новообразовании, чтобы обеспечить непрерывным питанием продолжающую расти опухоль.

Каждое новое поколение раковых клеток наследует эти опасные мутации, и к тому времени, когда из них разовьется полномасштабная опухоль, в ней могут быть уже тысячи новых мутаций, которых не было и нет в здоровых клетках. Такие мутации иногда позволяют раковым клеткам процветать за счет организма-хозяина, но они же иной раз приводят и к их повреждению. Мутации в митохондриальной ДНК могут оставить клетку без достаточного запаса энергии для роста. У раковых клеток для этой проблемы есть смелое решение: они крадут митохондриальные гены у здоровых клеток, чтобы заменить ими собственные поврежденные[818].

__________

Даже сложно себе представить, что может быть общего между раковой опухолью и розовым грейпфрутом. Однако и заболевание, и цвет обязаны своим появлением мозаицизму: в обоих случаях в организме обособляется линия клеток с мутациями, унаследованными от материнской клетки. Когда ученые наконец поняли, что рак – это смертельная форма мозаицизма, они задумались о том, сколько же может быть еще и других форм.

По мере того как исследователям удавалось проводить все более подробные наблюдения деления клеток в организме, простая арифметика подсказала им, что мозаицизм может встречаться везде[819]. К тому времени как человек становится взрослым, из единственной оплодотворенной яйцеклетки получается примерно 37 трлн клеток. Каждый раз, когда какая-нибудь клетка делится, она должна создавать новую копию 3 млрд пар оснований ДНК. Как правило, наши клетки управляют этим копированием с изумительной точностью. Если они допустят ошибку, одна из дочерних клеток приобретет новую мутацию, которой не было при зачатии. И если эта дочерняя клетка произведет линию потомков, мутацию способна унаследовать достаточно большая группа клеток. Зная частоту возникновения соматических мутаций, ученые подсчитали, что у каждого из нас может быть более десяти квадриллионов[820] новых мутаций.

Но простой арифметики недостаточно, чтобы точно описать природу мозаицизма. Существует вероятность, что после возникновения мутации клетка погибнет. В наших телах может происходить своеобразный внутренний естественный отбор, благоприятствующий клеткам, которые сохранили тот геном, что был у оплодотворенной яйцеклетки. Кроме того, некоторые мутации могут быть безвредны и накапливаться, не оказывая никакого влияния – ни плохого, ни хорошего. Не имея технологий для проверки ДНК, ученые не могли найти подтверждений ни для одной из этих возможностей. Им удавалось описывать новые примеры мозаицизма у человека, только когда его проявлений было сложно не заметить.

Вот пример. 5 августа 1959 г. в Медицинском центре Нью-Йоркского университета родился ребенок одновременно с пенисом и влагалищем, но без семенников[821]. Врачи взяли клетки костного мозга новорожденного, чтобы изучить его половые хромосомы. Из 20 клеток, которые были исследованы медиками, восемь содержали мужской набор: одну X- и одну Y-хромосому. А в 12 была только одна X-хромосома.

Врачи поняли, что первоначально в зиготе присутствовали X- и Y-хромосомы. Но на каком-то этапе беременности делящаяся клетка эмбриона случайно не передала Y-хромосому одной из дочерних. Без Y-хромосомы дочерняя клетка не могла вырабатывать некоторые белки, участвующие в формировании мужской анатомии. Она разделилась и дала начало другим клеткам без Y-хромосомы, способствовавшим образованию некоторых женских анатомических особенностей. Ребенок получился мозаичным, с клетками XY и X0.

По мере того как ученые выясняли все больше подробностей о развитии эмбрионов, оказывалось, что другие признаки тоже обусловлены мозаицизмом. Линии Блашко, например, видны уже при рождении ребенка, следовательно, существует вероятность какого-то генетического нарушения. Но генетики не обнаруживали родственников такого ребенка с подобной проблемой – значит, эта мутация не передается от родителей к детям.

В 1983 г. группа израильских генетиков исследовала хромосомы мальчика, правая сторона тела которого была испещрена линиями Блашко[822]. Ученые взяли для изучения эпителиальные клетки из его мочи, клетки кожи рук и лейкоциты. В клетках кожи с правой руки и в половине лейкоцитов оказалась лишняя копия хромосомы 18. Остальные клетки были нормальными. Специалисты пришли к выводу, что хромосомная ошибка возникла на ранних этапах развития организма. Образовалась новая линия клеток, в каждой из которых была лишняя копия упомянутой хромосомы. Позже из этих клеток сформировались разные ткани, в том числе клетки иммунной системы и кожи. Видимые изменения появились за счет тех клеток кожи, где была мутация.

Джозеф Меррик тоже оказался мозаиком, хотя распутать его случай было очень сложно. В течение многих лет после смерти Человека-слона врачи в целом соглашались, что у него был нейрофиброматоз – наследственное заболевание, при котором нейроны склонны образовывать доброкачественные опухоли. Хотя у Меррика действительно имелись некоторые симптомы нейрофиброматоза, другие исследователи отмечали, что у него наблюдались и те, что не соответствовали диагнозу. Например, разрастание ступней не относится к симптомам нейрофиброматоза.