Она смеется, как мать

22
18
20
22
24
26
28
30

Получив стипендию в маленьком колледже неподалеку, Оуэн смог продолжить обучение, хотя по-прежнему ежедневно после занятий возвращался домой для работы на ферме. Его семья ожидала, что он станет школьным учителем. Но, когда приблизилось время окончания колледжа, Оуэн решил стать биологом.

Он отправился в Висконсинский университет, где наполнял гигантские корзины куриными головами для исследования радужной оболочки. Он занимался осеменением голых голубей, чтобы проследить те гены, из-за которых они потеряли оперение. Он изучал, как зародышевые клетки птиц прорывают себе проход вглубь эмбрионов, чтобы внедриться на свое место. Благодаря этой работе Оуэн навсегда усвоил, что развитие – это не только деление клеток, но и их перемещение.

После получения в 1941 г. докторской степени Оуэн начал работать в генетической лаборатории, которая сама себя финансировала, выполняя тесты на отцовство у коров. «Это было такое биологическое коммерческое предприятие», – рассказывал он позже[847]. Фермеры по всей стране начали осеменять своих коров спермой быков-чемпионов. И они хотели быть уверены, что телята унаследовали ту самую ценную родословную, за которую было уплачено, а не оказались зачатыми от какого-то случайного самца.

Лаборатория получала от этой деятельности не только деньги, она была буквально затоплена коровьей кровью. «Кровь брали у всего стада», – писал Оуэн.

Для Оуэна и его коллег-биологов эта кровь стала научным даром небес. Каждый образец сопровождался обширной информацией о животном и его родственниках. Исследователи могли анализировать содержание в крови различных белков – не только тех, от которых зависела группа крови, но и многих других – и изучать, как коровы передают гены своим потомкам. Они имели возможность задаваться фундаментальными вопросами – например, кодируются ли сложные признаки множеством отдельных генов или генами, которые каким-то образом связаны друг с другом. Все получалось очень хорошо. Работа шла успешно.

Но тут возникла одна проблема. «В коровьих близнецах было что-то странное», – рассказывал Оуэн.

Говоря точнее, что-то странное было в фримартинах. Оуэн сравнил белки крови фримартинов и их братьев-близнецов. Поскольку они были разнояйцовыми, он ожидал, что их белки будут различаться так же, как у обычных пар братьев и сестер. Однако белки у фримартинов и их братьев оказались идентичными. Хотя животные были разного пола, биохимически они выглядели как однояйцовые близнецы.

Оуэн не мог объяснить такой результат. Пока он думал над загадкой фримартинов, к нему за помощью обратился фермер из Мэриленда[848]. Однажды утром тот спарил гернзейскую корову с чистопородным гернзейским быком. Позже в тот же день изгородь его скотного двора проломил герефордский бык со светлой головой и тоже покрыл корову. Спустя девять месяцев корова родила близнецов.

«Это была примечательная пара, – вспоминал позже Оуэн, – поскольку телочка выглядела как положено гернзейской корове, а у бычка была доминантная белая голова, характерная для герефордской породы».

Фермер спрашивал, может ли Оуэн установить отцовство. Он послал Оуэну кровь телят, матери и обоих быков. Когда Оуэн внимательнее взглянул на белки в крови, он обнаружил нечто, чего никто не видел раньше, – у каждого теленка были белки обоих быков[849].

Вспомнив исследования Лилли, Оуэн предположил, что у телят были разные отцы, но затем их кровь смешалась через сросшиеся плаценты. Он заинтересовался, насколько сильным было это смешение. Ведь красные кровяные тельца существуют всего несколько месяцев, замещаясь новыми, которые образуются в костном мозге. Оуэн решил проследить за ростом телят из Мэриленда и посмотреть, в нормальных ли животных они разовьются.

Оуэн договорился с фермером о повторном взятии крови у телят, когда им исполнится шесть месяцев. Их кровь по-прежнему оставалась смешанной. И даже когда телятам исполнился год, Оуэн с удивлением обнаружил, что у них в крови по-прежнему были белки от обоих быков. Он понял, что между телятами была не просто передача крови. Близнецы передали друг другу стволовые клетки костного мозга.

Сделав это открытие, Оуэн показал, насколько неточны наши представления о наследственности. Мы уверены, что унаследовали свои гены от родителей, когда одна яйцеклетка соединилась с одним сперматозоидом, образовалась одна зигота и получился один геном. Теперь же Оуэн описал коров, чьи тела состояли из клеток, принадлежащих разным организмам.

Можно проследить восхождение некоторых клеток чистокровной гернзейской телочки назад к исходной клетке. Но также можно проследить и происхождение некоторых ее стволовых клеток от ее герефордского брата-близнеца. Если бы эмбриологи рисовали родословную этих клеток, им пришлось бы рисовать два дерева с отдельными основаниями и переплетенными ветвями. А если бы они прослеживали гены этих клеток до предыдущего поколения, то некоторые были бы от гернзейского быка, а некоторые – от герефордского. Однако, несмотря на нарушение правил наследственности, телята были совершенно здоровы. Сплав разных клеток от различных родителей работал довольно хорошо.

Оуэн задумался, редкой ли случайностью было обнаруженное. Он изучил кровь сотен пар телят-близнецов. В 90 % случаев он нашел, что их кровь оказалась смешанной. Это открытие было особенно примечательно, поскольку иммунную систему близнецов, похоже, не беспокоило такое смешивание. К 1940-м гг. переливание крови стало весьма стандартной медицинской процедурой, потому что врачи имели возможность очень тщательно избегать переливания пациенту крови неподходящей группы, чтобы не запустить смертельного иммунного ответа. Оуэн предполагал, что, возможно, раннее знакомство с чужими клетками учит иммунную систему толерантности.

Оуэн опубликовал историю о фримартинах в октябре 1945 г., после чего Калифорнийский технологический институт предложил ему работу. Биолог вместе с женой уехал от висконсинских зим в Южную Калифорнию и оставил свои исследования фримартинов. Устроившись в обычную лабораторию, он стал работать с крысами, сшивая кровеносные сосуды разных животных, чтобы посмотреть, передадут ли они стволовые клетки через общий кровоток.

Возможно, его работа с фримартинами была бы забыта, если бы через несколько лет на нее не обратил внимания один британский врач. Питер Медавар в то время проводил новаторские эксперименты по трансплантации[850]. Он занялся этими исследованиями во время Второй мировой войны, надеясь найти способ лечения обгоревших пилотов Королевских ВВС. Медавар обнаружил, что если взять и определенным образом обработать здоровую кожу самого пациента, то можно успешно пересадить ее на место ранения. Но, если он пересаживал ткань, взятую от другого человека, она обычно не приживалась.

Иногда Медавар повторно пытался пересадить пациенту фрагмент кожи от того же донора. На этот раз она отторгалась даже быстрее. Медавар понял, что иммунная система воспринимает трансплантат как вторгающегося врага и начинает атаку тем быстрее, чем лучше она знакома с чужеродной тканью.

Это открытие заставило Медавара задуматься над тем, как же у иммунных клеток получается отличать своих от чужих. Он предположил, что в развивающемся эмбрионе иммунная система учится распознавать в качестве идентификационных меток на клетках белки, которые кодируются своими генами. Когда позже она сталкивается с клетками без правильной метки, она считает их вражескими. Медавар увидел простой способ узнать, так ли это. Однояйцовые близнецы, имеющие одинаковые гены, должны принимать пересаженные друг от друга ткани. Разнояйцовые близнецы и другие братья и сестры с большей вероятностью отторгнут такие ткани.

Медавар с коллегами отправился на одну из исследовательских ферм в Стаффордшире, чтобы провести проверку на коровах. Ученые вырезали кусочки кожи из коровьих ушей и внедряли их в холку другим коровам[851]. Эксперимент оказался одновременно и удачным, и нет. У обычных братьев и сестер трансплантат обычно не приживался – не в пример однояйцовым близнецам. Собственно, так и ожидалось. Но Медавар с удивлением обнаружил, что у разнояйцовых близнецов, и фримартинов в том числе, трансплантат тоже хорошо приживался.