Долгое время предметы, которыми занимаются математики, были по большей части плохо определены; думали, что знают их, потому что представляли себе их при помощи чувств или воображения; но получался только грубый образ, а не ясная идея, на которой можно было бы строить рассуждение.
Вот сюда-то прежде всего логики и должны были направить свои усилия.
Точно то же произошло и для иррационального числа.
Смутная идея непрерывности, которой мы обязаны интуиции, разрешилась в сложную систему неравенств, касающуюся целых чисел.
Благодаря ей трудности при переходе к пределу или при рассмотрении бесконечно малых окончательно устраняются.
Теперь в анализе остаются только целые числа или конечные и бесконечные системы целых чисел, связанных между собой сетью отношений равенства или неравенства.
Математика, как говорят, арифметизировалась.
Прежде всего возникает вопрос: закончилась ли эта эволюция?
Достигли ли мы наконец абсолютной строгости? Ведь на каждой стадии эволюции наши предки также верили в то, что достигли ее. Если они ошибались, то не ошибаемся ли и мы подобно им?
Мы надеемся уже не прибегать в наших рассуждениях к интуиции; философы скажут нам, что это иллюзия. Чистая логика всегда приводила бы нас только к тавтологии; она не могла бы создать ничего нового; сама по себе она не может дать начало никакой науке.
Эти философы правы в одном смысле: для того чтобы создать геометрию или какую бы то ни было науку, нужно нечто другое, чем чистая логика.
Для обозначения этого другого у нас нет иного слова, кроме слова «интуиция». Но сколько различных идей скрывается под одним и тем же словом?
Сравним такие четыре аксиомы:
1) Две величины, равные третьей, равны между собой.
2) Если теорема справедлива для 1 и если доказывается, что она справедлива для
3) Если точка
4) Через одну точку можно провести только одну прямую, параллельную данной прямой.
Все четыре аксиомы должны быть приписаны интуиции, и однако же первая является выражением одного из правил формальной логики; вторая – настоящее синтетическое суждение a priori, это – основание строгой математической индукции; третья есть обращение к воображению; четвертая – скрытое определение.
Интуиция не основывается неизбежно на свидетельстве чувств; чувства скоро оказались бы бессильными; мы не можем, например, представить себе тысячеугольника и однако же интуитивно рассуждаем о многоугольниках вообще, а они включают в себя как частный случай и тысячеугольник.
Вам известно, что подразумевал Понселе под принципом непрерывности. То, что справедливо для действительной величины, говорил Понселе, должно быть справедливо и для мнимой; то, что справедливо для гиперболы, асимптоты которой действительны, должно быть поэтому справедливо и для эллипса, асимптоты которого мнимые.