Теорема века. Мир с точки зрения математики

22
18
20
22
24
26
28
30

Их задача была нелегкой. Если Лоренц преодолел затруднения, то только путем нагромождения гипотез.

Наибольшим остроумием отличалась идея местного времени. Вообразим двух наблюдателей, которые желают выверить свои часы при помощи световых сигналов; они обмениваются сигналами, но, зная, что свет распространяется не мгновенно, дают их, так сказать, перекрестным способом. Когда наблюдатель в пункте В принимает сигнал из пункта А, его часы должны показывать не то время, которое показывали часы в пункте А в момент отправления сигнала, а время, увеличенное на некоторую постоянную, представляющую собой длительность передачи. Пусть, например, из пункта А посылается сигнал, когда часы в нем показывают время 0, а в пункте В сигнал принимается, когда часы в нем показывают время t. Часы выверены, если запаздывание, равное t, представляет собой длительность передачи сигнала; чтобы это проверить, из пункта В посылается сигнал, когда часы в нем показывают время 0; в пункте А должны получить его, когда часы в нем показывают время t. Тогда показания часов согласованы. И действительно, они показывают одно и то же время в одно и то же физическое мгновение, но при условии, что оба пункта были неподвижны. В противном случае длительность передачи не будет одинакова в обоих направлениях: в случае, когда, например, пункт А движется навстречу оптическому возмущению, исходящему из В, и тогда, когда пункт В удаляется от возмущения, исходящего из А. Выверенные таким способом часы не будут показывать истинное время, они будут показывать так называемое местное время: одни часы будут отставать от других. Но это несущественно, поскольку у нас нет никакого средства заметить это. Все явления, происходящие, например, в А, будут запаздывать, но запаздывать одинаково, и наблюдатель не заметит этого, потому что его часы отстают; таким образом, как это следует из принципа относительности, у него не будет никакого средства узнать, находится ли он в покое или в абсолютном движении.

Этого, к сожалению, недостаточно, необходимы дополнительные гипотезы; надо допустить, что движущиеся тела испытывают однородное сокращение в направлении движения: например, один из диаметров Земли укорачивается на одну двухсотмиллионную долю вследствие движения нашей планеты, тогда как другой диаметр сохраняет свою нормальную длину. Этим предположением компенсируются последние малые различия. Но затем нужна еще гипотеза о силах. В мире, движущемся равномерно-поступательно, силы, независимо от их происхождения, будут ли это силы тяготения или упругости, должны в определенной пропорции уменьшаться. Точнее, должны уменьшаться их компоненты, перпендикулярные к направлению движения; параллельные же компоненты не изменяются. Теперь вернемся к нашему примеру двух наэлектризованных тел; эти тела отталкивают друг друга, но в то же время, если вся система находится в равномерно-поступательном движении, они эквивалентны двум параллельным токам одного направления, которые притягиваются.

Таким образом, это электродинамическое притяжение уменьшает электростатическое отталкивание, и результирующее отталкивание оказывается слабее, чем если бы оба тела были в покое. Но так как для измерения этого отталкивания мы должны уравновесить его другой силой и так как все другие силы испытывают уменьшение в одной и той же пропорции, то мы не замечаем ничего. Тем самым все, кажется, приведено в порядок, но все ли сомнения уже устранены? Что произошло бы, если бы можно было сообщаться путем сигналов иной природы, чем световые, скорость распространения которых отличалась бы от скорости света? Если бы, выверив часы оптическим способом, мы захотели бы сверить наши часы при помощи этих новых сигналов, мы обнаружили бы расхождения, с очевидностью говорящие о совместном поступательном движении обоих пунктов. А разве нельзя себе представить подобные сигналы, если вместе с Лапласом мы примем, что всемирное тяготение распространяется в миллион раз быстрее света.

Итак, в последнее время принцип относительности был мужественно защищен. Но уже та энергия, какая потребовалась для этой защиты, показывает, сколь серьезна была атака.

Принцип Ньютона. Теперь поговорим о принципе Ньютона, о равенстве действия и противодействия. Этот принцип тесно связан с предыдущим, и, по-видимому, падение одного повлекло бы за собой падение другого. Поэтому мы не должны удивляться, встречая здесь те же трудности.

Я уже раньше указал, что новые теории не склонны дорожить этим принципом.

По теории Лоренца электрические явления обусловлены смещением мелких заряженных частиц, так называемых электронов, погруженных в среду, которую мы называем эфиром. Движения этих электронов производят возмущения в окружающем эфире; эти возмущения распространяются во все стороны со скоростью света, и другие электроны, первоначально бывшие в покое, в свою очередь приходят в колебания, когда возмущение достигает частей эфира, соприкасающихся с ними. Таким образом, электроны взаимодействуют между собой, но это взаимодействие не прямое, оно совершается через посредство эфира. Может ли при таких условиях осуществляться равенство действия противодействию, по крайней мере для наблюдателя, учитывающего только движения материи, т. е. электронов, и не принимающего в расчет движений невидимого для него эфира? Очевидно, нет. Даже если бы эта компенсация была точной, она не могла бы осуществляться одновременно. Возмущение распространяется с конечной скоростью; поэтому оно достигает второго электрона лишь тогда, когда первый уже давно вернулся в состояние покоя. Таким образом, второй электрон подвергнется воздействию первого с некоторым запозданием, но, конечно, в этот момент он не окажет на него никакого противодействия, поскольку вокруг первого электрона ничто уже не движется.

Анализ фактов позволит нам сделать изложение еще более точным. Вообразим излучатель Герца, подобный тем, которые употребляются в беспроволочной телеграфии. Он излучает энергию во все стороны, но мы можем снабдить его параболическим зеркалом, как это делал Герц со своими небольшими излучателями, и направить всю производимую энергию в каком-то одном направлении. Что должно произойти тогда согласно теории? Аппарат должен испытать отдачу, как если бы он был пушкой, а испущенная им энергия была бы снарядом; но это противоречит принципу Ньютона, потому что здесь снаряд не имеет массы, он является не веществом[20], а энергией. То же самое имеет место и в прожекторе, снабженном рефлектором, поскольку свет есть не что иное, как возмущение электромагнитного поля. Такой прожектор должен испытывать отдачу, как если бы испускаемый свет был снарядом. Какая сила вызывает эту отдачу? Это то, что называют давлением Масквелла – Бартольди, оно очень мало, и его трудно обнаружить даже при помощи самых чувствительных радиометров; но важно то, что оно существует.

Если вся энергия, вышедшая из нашего излучателя, попадает в приемник, то последний испытывает как бы механический толчок, который в некотором смысле представляет собой компенсацию отдачи, испытанной излучателем; противодействие будет равно действию, но оно не будет с ним одновременно; приемник оттолкнется, но не в тот момент, когда излучатель испытает отдачу. Если же энергия распространяется беспредельно, не встречая приемника, то компенсация не произойдет никогда.

Но, быть может, можно сказать, что пространство между излучателем и приемником, в котором возмущение распространяется от первого ко второму, не является пустым, а что оно наполнено не только эфиром, а и воздухом или (в междупланетных пространствах) некоторым весьма тонким, но все же весомым флюидом; что это вещество, как и приемник, испытывает толчок в момент падения на него энергии, а также отдачу, когда возмущение оставляет его? Это спасло бы принцип Ньютона, но это неверно; если бы энергия в процессе распространения всегда была связана с некоторым вещественным субстратом, то движущееся вещество увлекало бы свет. Однако Физо показал, что это не так, по крайней мере для воздуха. Впоследствии это подтвердили Майкельсон и Морли. Можно также предположить, что движения вещества в собственном смысле точно компенсируются движениями эфира, но это привело бы нас к тем соображениям, какие только что рассмотрены. Принцип, понимаемый таким образом, будет в состоянии объяснить все, ибо каковы бы ни были видимые движения, всегда можно придумать гипотетические движения, их компенсирующие. Но если он и может все объяснить, то он не позволяет нам ничего предвидеть, он не позволяет нам выбирать между различными возможными гипотезами, поскольку он все объясняет заранее. Стало быть, он становится бесполезным.

Кроме того, предположения, которые пришлось бы сделать о движениях эфира, не очень удовлетворительны. Так, естественно было бы предположить, что если электрические заряды удваиваются, то скорости различных атомов эфира также удваиваются; но для компенсации необходимо, чтобы средняя скорость эфира учетверилась.

Вот почему я долгое время считал, что эти теоретические выводы, противоречащие принципу Ньютона, в конце концов будут отвергнуты. Однако новейшие опыты, в которых исследовалось движение электронов, испускаемых радием, скорее их подтверждают.

Принцип Лавуазье. Перехожу к принципу Лавуазье, касающемуся сохранения масс. Конечно, это – принцип такого рода, что его нельзя затронуть без того, чтобы не поколебать механику. И тем не менее теперь некоторые думают, что он кажется нам верным только потому, что в механике рассматриваются не слишком большие скорости, но что он перестал бы быть верным для тел, обладающих скоростями, сравнимыми со скоростью света. Но в настоящее время такие скорости считаются осуществленными: катодные лучи и лучи радия состоят из весьма малых частиц или из электронов, летящих со скоростью, которая, без сомнения, меньше скорости света, но все же составляет от одной десятой до одной трети ее.

Эти лучи отклоняются как в электрическом, так и в магнитном поле; сравнивая то и другое отклонение, можно одновременно измерить скорость электронов и их массу (или, вернее, отношение их массы к их заряду). Но оказалось, что когда эти скорости приближаются к скорости света, необходимо вносить поправки. Эти частицы, будучи заряжены, не могут перемещаться, не приводя в колебание эфир; чтобы привести их в движение, необходимо преодолеть инерцию двоякого рода – инерцию самой частицы и инерцию эфира. Поэтому полная или наблюдаемая масса, которую именно и измеряют, состоит из двух частей: из действительной или механической, массы частицы и из электродинамической массы, выражающей инерцию эфира.

Вычисления Абрахама и опыты Кауфмана показали, что механическая масса в собственном смысле равна нулю и что масса электронов – по крайней мере отрицательных электронов – имеет исключительно электродинамическое происхождение. Это вынуждает нас изменить определение массы: мы не можем уже проводить различие между массой механической и массой электродинамической, так как тогда первая исчезает. Нет иной массы, кроме массы, связанной с электродинамической инерцией. Но в таком случае масса уже не может быть постоянной, она увеличивается со скоростью; мало того, она зависит от направления, так что тело, имеющее значительную скорость, оказывает разное сопротивление силам, стремящимся отклонить его с его пути, и силам, ускоряющим или замедляющим его движение.

Есть еще один выход: последними элементами тел являются электроны, одни из них заряжены отрицательно, другие – положительно.

Отрицательные электроны не имеют массы – это установлено; но электроны положительные, согласно тому немногому, что о них известно, гораздо более крупны. Быть может, они, кроме их электродинамической массы, имеют также настоящую механическую массу. В таком случае истинная масса тела была бы суммой механических масс его положительных электронов: отрицательные электроны не принимаются в расчет. Определенная таким образом масса еще могла бы быть постоянной.

Увы! И этот выход ускользает от нас. Вспомним то, что было сказано по поводу принципа относительности и усилий, предпринятых для его спасения. И дело не только в том, чтобы спасти принцип, но и в несомненных результатах опытов Майкельсона. Как мы видели, Лоренцу пришлось для истолкования этих результатов предположить, что в среде, движущейся равномерно-поступательно, все силы независимо от их происхождения уменьшаются в одной и той же пропорции; мало того, такое уменьшение должно иметь место не только для реальных сил, но и для сил инерции. Таким образом, говорит Лоренц, необходимо, чтобы массы всех частиц при поступательном движении испытывали такое же изменение, какое испытывают электромагнитные массы электронов.

Итак, механические массы должны изменяться по тем же законам, что и массы электродинамические: следовательно, они не могут быть постоянными.