Теорема века. Мир с точки зрения математики

22
18
20
22
24
26
28
30

Я полагаю, что такие рассуждения основаны на принятии слишком упрощенной теории аберрации. Как я уже упомянул, Майкельсон показал, что физические процессы не в состоянии обнаружить абсолютное движение; я убежден, что это верно и для астрономических методов, какова бы ни была степень точности.

Но как бы то ни было, данные, которые астрономия предоставит нам по этому вопросу, когда-нибудь будут иметь неоценимое значение для физика. Я полагаю, что теоретики могут ожидать отрицательный результат, имея в виду опыт Майкельсона; думаю, что они совершили бы полезное дело, создав теорию аберрации, которая учитывала бы это заранее.

Электроны и спектры. Но вернемся на Землю. Здесь мы также могли бы помочь экспериментаторам. Мы можем, например, подготовить почву, тщательно исследуя динамику электронов, не придерживаясь при этом какой-то одной гипотезы, а, наоборот, увеличивая, насколько возможно, их число. Используя наши работы, физики могли бы тогда предложить решающий опыт, который позволил бы отдать предпочтение одной из них.

К динамике электрона существуют разные подходы. Но в числе путей, ведущих к ней, есть один, который был в некотором пренебрежении, хотя он как раз из числа тех, которые обещают наибольшие неожиданности. Дело в том, что спектральные линии излучения порождаются движениями электронов, как это доказывает эффект Зеемана; то, что колеблется в раскаленном теле, испытывает действие магнита и, следовательно, наэлектризовано. Это очень важный исходный пункт; но пока далее его не пошли. Почему спектральные линии распределены соответственно точному закону? Экспериментаторы до мельчайших деталей изучили эти законы, они весьма точны и сравнительно просты. Первые исследования этих распределений включали идею о гармонических соотношениях, встречающихся в акустике; однако различие оказалось значительным; не только частоты не представляют собой последовательных кратных одного и того же числа, но мы даже не находим здесь ничего соответствующего корням тех трансцендентных уравнений, к которым нас приводят многие задачи математической физики, например задача о колебаниях упругого тела произвольной формы, задача о герцевских колебаниях в излучателе произвольной формы, задача Фурье об охлаждениях твердого тела.

Законы спектральных линий более просты, но природа их совершенно иная; ограничусь лишь одним примером такого различия: для гармоник высшего порядка число колебаний стремится к конечному пределу вместо того, чтобы бесконечно возрастать.

Эти явления еще не объяснены, и я думаю, что здесь перед нами одна из наиболее важных тайн природы. Японский физик Нагаока предложил недавно свое объяснение: по его мнению, атомы состоят из большого положительного электрона, окруженного кольцом из весьма большого числа весьма малых отрицательных электронов. Такова планета Сатурн со своим кольцом. Это очень интересное, но еще не вполне удовлетворительное объяснение; его следовало бы развить. Мы проникаем, так сказать, в самые глубины вещества; с той частной позиции, которую мы занимаем сегодня, представляется, что когда мы узнаем, почему колебания раскаленных тел так отличаются от обычных упругих колебаний, почему электроны ведут себя иначе, чем обычное вещество, тогда мы лучше поймем динамику электронов и, может быть, нам будет легче согласовывать ее с принципами.

Условные положения перед лицом опыта. Теперь предположим, что все эти усилия потерпят неудачу (чего, учитывая все обстоятельства, я не допускаю); что должны мы делать тогда? Нужно ли будет попытаться исправлять поколебленные принципы при помощи какого-нибудь ухищрения? Это, очевидно, всегда возможно, и я не беру назад ничего из сказанного раньше. Если бы вы захотели спорить со мной, вы могли бы сказать: «Не написано ли у вас, что принципы – несмотря на их опытное происхождение – в настоящее время лежат вне досягаемости опыта, потому что они стали условными соглашениями. А теперь вы нам говорите, что последние достижения опыта подвергают эти принципы опасности». Так вот, я был прав раньше, но и теперь я не ошибаюсь. Я был прав раньше – и то, что происходит ныне, служит тому новым доказательством. Возьмем, например, калориметрический опыт, который произвел Кюри с радием. Можно ли согласовать его с принципом сохранения энергии? Этого пытались достигнуть многими способами, и на один из них я хотел бы обратить ваше внимание; это – не то объяснение, которое ныне одерживает верх, но все же одно из предложенных. В нем предполагается, что радий есть всего лишь посредник, что он только концентрирует излучения неизвестной природы, которые бороздят пространство по всем направлениям, проникая сквозь все тела, кроме радия, никак не воздействуя на них и не изменяя своей природы. Один только радий способен поглощать часть энергии этих излучений и затем в различных формах отдавать ее нам.

Какое удачное объяснение, и как оно удобно! Во-первых, его нельзя проверить, а следовательно, и опровергнуть. Во-вторых, оно может служить для объяснения каких угодно нарушений принципа Майера: оно заранее дает ответ не только на возражение Кюри, но и на любые другие возражения, какие могут быть представлены экспериментаторами в будущем. Эта новая неизвестная энергия могла бы служить для всевозможных целей.

Это как раз то, о чем я говорил в свое время; и это доказывает, что наш принцип вне досягаемости опыта. Но в конце концов что же приобрели мы с помощью такой уловки? Принцип сохранен, но чему он может служить с этих пор? Раньше он позволял нам предвидеть, что в таких-то обстоятельствах мы можем рассчитывать на такое-то полное количество энергии; он нас ограничивал; но теперь, после того, как в наше распоряжение предоставлен неопределенный запас новой энергии, мы уже не ограничены ничем. А если, как я писал в «Науке и гипотезе», какой-нибудь принцип перестает быть плодотворным, то опыт, не противореча ему непосредственно, тем не менее осудит его.

Будущая математическая физика. Поэтому надо было бы поступать не так; мы должны были бы перестраивать все сызнова. Впрочем, если бы такая необходимость и возникла, то мы могли бы найти себе утешение. Отсюда еще не следовало бы заключать, что научный труд – труд Пенелопы, что наука способна лишь к эфемерным построениям, которые ей вскоре же приходится разрушать собственными руками до самого основания.

Как я говорил, мы однажды уже прошли через подобный кризис. Я указывал, что в математической физике второго периода – физике принципов – встречаются следы предшествующей физики, физики центральных сил. То же самое будет иметь место, если нам придется познакомиться с физикой третьего периода. Так, линяющее животное разрывает свой слишком тесный панцирь и заменяет его новым, но и под новой оболочкой легко узнать существенные черты прежнего организма.

Мы не в состоянии предвидеть, в каком направлении пойдет дальнейшее развитие. Быть может, кинетическая теория газов расширится и послужит образцом для других теорий. В таком случае факты, вначале казавшиеся нам простыми, были бы уже только результатом суммирования огромного числа элементарных фактов, которые, управляясь единственно законами случая, стремились бы к одной и той же цели. Тогда физический закон получил бы совершенно новый вид: он не был бы уже только дифференциальным уравнением, но приобрел бы характер статистического закона. Возможно также, что придется создать совершенно новую механику, которую мы сейчас лишь смутно предугадываем. В этой механике инерция возрастала бы вместе со скоростью, и скорость света являлась бы непреодолимым пределом. Обычная, более простая, механика сохранила бы значение первого приближения, так как она была бы верна для не очень больших скоростей: таким образом, старая динамика еще содержалась бы в новой. Мы не имели бы причин жалеть о том, что верили принципам: в практической области было бы даже самым верным продолжать действовать так, как если бы мы сохранили эту веру, ибо скорости, чересчур большие и не допускающие применения старых формул, встречались бы всегда лишь в качестве исключения. Эти принципы столь полезны, что за ними надо было бы сохранить их место. Желать полного их исключения значило бы лишить себя ценного оружия. В заключение я хотел бы сказать, что мы еще не дошли до этого; еще ничто не доказывает, что они не выйдут из борьбы победоносными и неизмененными.

Часть III. Объективная ценность науки

Глава X. Искусственна ли наука?

1. Философия Леруа[21]

Мы видели много оснований для скептицизма; должны ли мы довести этот скептицизм до конца или остановиться на пути? Идти до конца – это самое соблазнительное, самое удобное решение вопроса; многие приняли его, отчаявшись что-либо спасти от крушения.

Среди сочинений, внушенных таким стремлением, необходимо поставить на первом месте труды Леруа. Этот мыслитель является не только философом и заслуженным писателем; он также обладает глубоким знанием точных наук, в частности физических; кроме того, он обнаружил ценную способность к математическому изобретательству.

Изложим в немногих словах его учение, давшее повод к большим спорам.

Наука состоит из одних условных положений, и своей кажущейся достоверностью она обязана единственно этому обстоятельству; научные факты и тем более законы суть искусственное творение ученого; поэтому наука отнюдь не в состоянии открыть нам истину, она может служить нам только как правило действия.

Мы узнаем здесь философскую теорию, известную под именем номинализма. Не все в этой теории ложно; ей нужно предоставить область, принадлежащую ей по праву, но не следует позволять ей переходить эти пределы.

Но учение Леруа не только номиналистично: ему свойственна еще другая черта, явившаяся, несомненно, благодаря влиянию Бергсона: оно антиинтеллектуалистично. С точки зрения Леруа, ум искажает все, к чему он прикасается; это еще более справедливо по отношению к его необходимому инструменту – «рассудочности». Реальность присуща только нашим беглым и изменяющимся впечатлениям, и даже эта реальность исчезает при первом прикосновении к ним.