Но фундаментальной трудностью по-прежнему является понимание самого начала: для победы на этом фронте придется подождать окончательной теории – «теории всего», возможно одного из вариантов теории суперструн. Такая теория положит конец интеллектуальному поиску, который начал еще Ньютон, а затем продолжали Максвелл, Эйнштейн и их последователи. Она углубит наше понимание пространства, времени и основных сил, а также прольет свет на загадки ультраранней Вселенной и центров черных дыр.
Возможно, такая цель недостижима. Может не быть никакой «теории всего», или, если она есть, возможно, ее постижение находится за пределами наших умственных способностей. Но даже если эта цель и будет достигнута, это еще не означает конца научных исканий. Являясь фундаментальной наукой, космология одновременно самая грандиозная из наук об окружающей среде. Ее целью является понимание того, как простой «огненный шар» развился в сложную среду обитания, которую мы видим вокруг себя, – того, как здесь, на Земле, и, возможно, во многих других биосферах где-то еще развитие живых существ могло увенчаться их собственными размышлениями о том, как они появились.
Чтобы изложить эту точку зрения, Ричард Фейнман использовал прекрасную аналогию. Представьте себе, что вы никогда раньше не видели, как играют в шахматы, а потом, понаблюдав за несколькими партиями, смогли понять правила этой игры. Подобным же образом физики изучают законы и процессы, которые управляют основными элементами природы. В шахматах знание о том, как ходят фигуры, – это всего лишь заурядный первый шаг к тому, чтобы превратиться из новичка в мастера. Аналогично даже если мы и знаем основные законы, исследование того, как следствия из них определили космическую историю, – бесконечный поиск. Пренебрежение квантовой гравитацией, субатомной физикой и подобным препятствует нашему пониманию «начала». Но трудности интерпретации повседневного мира и явлений, которые наблюдают астрономы, проистекают из их
Аналогия с шахматами напоминает нам еще кое о чем. Нет никакого шанса, что наша конечная Вселенная, которую мы можем наблюдать, могла «отыграть» все эти потенциальные возможности, несмотря на то что она простирается на десятки миллиардов св. лет вокруг нас. Это так, потому что любая оценка того, сколько различных цепочек событий могло произойти, быстро превосходит числа, намного большие тех, с которыми мы уже сталкивались. Количество различных вариантов развития шахматной игры после того, как каждый игрок сделал всего по три хода, составляет примерно 9 млн. Существует гораздо больше партий из более чем 40 ходов, чем те 1078 атомов, которые находятся в пределах нашей видимости. Даже если все вещество во Вселенной образует собой шахматные доски, большинство возможных партий так и не будет сыграно. А разброс вариантов в настольной игре, очевидно, гораздо меньше по сравнению с тем разнообразием, которое предлагает природа.
Даже простые неодушевленные системы в целом слишком «хаотичны», чтобы быть предсказуемыми: Ньютону на самом деле повезло, когда он обнаружил в орбитах планет один из немногих законов природы, который
Темой этой книги должны были стать глубинные связи между микромиром и космосом, символом которых является Уроборос (рис. 1.1). Наша повседневная жизнь, явно сформированная субатомными силами, также обязана своим существованием точной настройке скорости расширения нашей Вселенной, процессам образования галактик, синтезу углерода и кислорода в древних звездах и т. д. «Правила» устанавливают всего лишь несколько основных физических законов; наше появление из Большого взрыва очень восприимчиво к шести «космическим числам». Если бы эти числа не были «хорошо настроены», постепенное – слой за слоем – разворачивание сложной структуры Вселенной не состоялось бы. Существует ли бесконечное множество других вселенных, которые были «плохо настроены» и поэтому стерильны? Является ли вся наша Вселенная «оазисом» в мультивселенной? Или мы должны искать другие причины для таких благоприятных значений наших шести чисел?
Сноски
1
Большая книга афоризмов (изд. 9-е, исправленное) / составитель К. В. Душенко. – М.: Эксмо, 2008.
2
В настоящее время наибольшее количество экзопланет обнаружено методом транзитов, в первую очередь благодаря работе спутника «Кеплер».
3
Современный уровень точности составляет десятки сантиметров в секунду.
4
Сейчас чувствительность приборов позволяет обнаруживать землеподобные планеты в зонах обитаемости вокруг звезд, более легких, чем Солнце. Кроме того, потенциально обитаемые планеты обнаруживаются другими методами, в первую очередь методом транзитов.
5
О современных представлениях по этому вопросу см.: Никитин М. Происхождение жизни. От туманности до клетки. – М.: Альпина нон-фикшн, 2018.
6
Бруно Д. Философские диалоги. – М.: ИП Карелин, 2013.
7