Цепочку задач можно продолжить: сколько колебаний сделает крюк-маятник, настолько будет продолжаться и цепочка веполя...
А теперь взглянем на цепочку под другим углом — с точки зрения технической системы. Были колесо и крюк — и одно вредное (для нас вредное!) взаимодействие между ними. Мы его устранили: ввели резиновое кольцо и ролик, не меняя принципа действия всей системы. Решили мини-задачу — создали новую подсистему, которая оказывает на свою «родную» систему только положительное воздействие. Следующие подсистемы — со счетчиками — развивают систему, обогащая ее дополнительными функциями...
И еще приглядимся к скобке (В1•В1.1). Нужно было обеспечить большую силу торможения, и на стальное колесо надели резиновое кольцо. Два элемента объединили в один комплекс — создали комплексный веполь. Такой прием всегда применяется, когда нужно повысить управляемость элемента системы, а использовать внутренние ресурсы не удается.
Чтобы обеспечить надежную управляемость, вводимый элемент должен обладать хорошей «отзывчивостью» на внешнее поле. Как это происходит, мы рассматривали на примере «флага гасконцев».
Среди множества взаимодействующих пар «вещество — поле» технические системы чаще всего выбирают своих любимчиков: железо и магнитное поле, железо и электромагнитное поле. Причины понятны: железо — наиболее распространенный конструкционный материал, и способность отзываться на магнитное поле — его самая характерная особенность. Такая пара даже получила свое особое название — феполь (от названия железа в таблице Д.И. Менделеева Fe — ferrum).
Самый простой пример — способ упрочнения древесно-стружечных плит (ДСП). Сейчас это основной материал, из которого изготовляют мебель. Получают древесно-стружечные плиты из древесной стружки, которую пропитывают специальным клеем, а потом спрессовывают. Выяснилось, что прочность плиты выше, если стружка расположена в общей массе не как попало, а вытянута в длину в одном направлении. Как этого добиться?
Запишем в вепольном виде исходную ситуацию: клей В1 создает связующее поле Пс, которое склеивает стружку В2.
Прессование в этом технологическом процессе проводится над готовой массой, поэтому в схему конфликта его можно не включать. Необходимо вытянуть стружку в длину в одном направлении, причем желательно это сделать до заливки клеем — в густой массе двигать стружку будет значительно труднее.
Для этого на стружку нужно чем-то подействовать (слова, даже самые хорошие, не помогают!). Подействовать можно только полем, например, механическим — подуть на нее или раскрутить в центробежной машине. И если один конец стружки держать, то под действием этих сил стружка вытянется во всю длину. Но как поймать каждую за хвост? Вот если бы один конец был тяжелее другого...
Стружка — особа безответственная, неотзывчивая. Нет в ней внутренних свойств, за которые можно было бы «зацепиться». Поэтому схема прямого воздействия полем не срабатывает. Приходится вводить дополнительное вещество — В3.
Чтобы решить задачу, стружку предварительно обрабатывают мелким железным порошком, а потом помещают в магнитное поле. И каждая стружечка вытягивается «по ниточке» вдоль магнитной силовой линии. Теперь и клей можно вылить. Материал ДСП приобретает определенную структуру — структурируется.
Применение ферромагнитных частиц и магнитного поля в качестве руководящей и направляющей силы — один из наиболее известных, широко применяемых и перспективных методов. В технике для структурирования можно применять практически все известные поля: центробежные — при вращении более тяжелые элементы «отодвинутся» от оси вращения, вытянувшись по радиусу; акустические — за счет свойства колебаний создавать выступы и впадины, концентрировать энергию в местах образования «стоячих» волн при наложении колебаний; вызывать и использовать резонансные явления; тепловые — меняя температуру в различных точках, можно перемещать между этими точками вещества и объекты...
Проблема 2
ИЗМЕРЕНИЕ ДИАМЕТРА СКВАЖИНЫ
Чтобы выяснить, как действуют на верхний слой земли изменение температуры, влажность и др., в земле бурят скважины — круглые отверстия определенного диаметра — и измеряют этот диаметр при различных условиях. Чтобы повысить точность измерения, был создан специальный прибор в виде параллелограмма (рис. 13.2) — шарнирный четырехгранник. Две вершины параллелограмма А1 и А2 упираются в стенки скважины, а между двумя другими — В1 и В2 — с помощью пружины натянута струна. В зависимости от натяжения струны ее частота колебаний — звук — меняется.
Это свойство и используется в приборе. Если диаметр скважины уменьшается, вершины А1 и А2 сближаются, а В1 и В2 расходятся, натягивая струну. Звук становится выше. И наоборот.