Значит, управлять процессом «трепетания» можно тремя способами: менять или величину зарядов, или расстояние между ними, или вводить между пластинами и полотнищем экран, например лист бумаги или полиэтиленовую пленку...
Отметим еще одно: наверное, вы согласитесь, что эта задача — на преобразование энергии, в частности энергии электростатического поля в энергию механическую — движение полотнища флага. И решали мы ее, создавая — синтезируя! — новую систему без всяких предварительных ограничений на право использовать тот или иной принцип действия.
Однако гораздо чаще возникают задачи, когда какая-то часть уже существующей системы (подсистема! — помните такое определение?) не в состоянии выполнять предъявляемые ей повышенные требования, и в систему приходится вводить новые элементы — вещества и поля.
Предвидится ехидный вопросик: «А как же ИКР?» Хороший вопрос. Но и ответ не хуже: «А для чего учимся? Чтобы вводить — не вводя. Или — если уж вводить, то самый минимум!» Как, например, это сделал изобретатель Н. Рахманов.
Во многих цехах детали перемещают с одного места на другое с помощью цепных шаговых конвейеров, которые закреплены под потолком цеха. В конвейере на оси колеса закреплен крюк, на крюке висит обрабатываемая деталь. Подходит такой крюк к рабочему месту и останавливается. Рабочий снимает с него деталь, выполняет необходимую операцию и вешает деталь обратно на крюк. Деталь «шагает» на следующую операцию, пока ее не обработают полностью.
Хорошее и удобное устройство обладает одним серьезным недостатком: крюк, когда трогается с места или останавливается, начинает раскачиваться. Деталь может слететь, может задеть рабочего. Как быть?
Очевидно, что если мы решим задачу для одного колеса и одной детали, то это решение можно будет распространить на весь конвейер. Поэтому запишем вепольную модель одного звена. Состоять она будет из колеса В1, крюка В2 и механического поля Пмех, которое двигает конвейер (в нашем случае — крюк, на котором висит деталь).
Выглядеть веполь будет так:
Пмех оказывает полезное действие на колесо, а колесо — на крюк. Но кроме полезного действия Пмех оказывает на крюк и вредное действие (стрелка
Запишем: «что-то» — это новый элемент В3, а новое поле — Пх. В результате в системе должны оставаться только полезные действия.
Теперь остается только перебрать варианты. В принципе перед нами типичная задача на гашение колебаний, которая хорошо известна в технике: при наезде на бугор качается кузов автомобиля; при включении прибора колеблется стрелка; при работе двигателя колеблется — «вибрирует» — основание... Методов гашения колебаний тоже известно множество, есть даже специальный термин — «демпфер» (поглотитель колебаний).
Изобретатель Н. Рахманов нашел почти идеальное решение: он надел на колесо резиновое кольцо, а на крюк поставил маленький резиновый ролик. Поставил их таким образом, чтобы кольцо и ролик плотно прижимались друг к другу. Теперь, как только крюк начинает качаться, ролик перекатывается по кольцу, вминаясь в него, и колебания крюка быстро гасятся за счет упругой деформации резины.
Проверим решение по схеме веполя: механическое поле Пмех движущегося транспортера действует на колесо В1 и надетое на него кольцо В1.1. Через них поле Пмех передается на крюк В2 и далее — на ролик В3. Вообще-то, если быть большим педантом, то надо нарисовать веполь, в котором возникает поле Пмех2 от качания крюка, и именно это Пмех2 передается на ролик В3. Выглядит это так:
Ролик В3, качаясь, создает силу упругой деформации Пуд, которая воздействует на крюк В2, останавливая его качание. Приглядимся внимательно к последней схеме. Возникла она потому, что надо было устранить вредное действие на крюк В2. И мы развернули В2 в самостоятельный веполь, удлинив цепочку записи. Построили цепной веполь.
Из данного примера можно сделать вывод о свойствах веполей: любой элемент веполя может быть развернут в самостоятельный веполь.
Чтобы убедиться в этом, поставим еще одну задачу: определить амплитуду колебаний крюка. Для решения задачи в систему можно ввести новый элемент, а можно использовать уже работающий ролик: посчитать, сколько оборотов он сделает при каждом колебании крюка. Соединим ролик со счетчиком числа оборотов В4. Счетчик может быть любого типа: механический, электрический, магнитный... Соответственно показания счетчика могут выглядеть по-разному: цифры на барабане, импульсы на экране осциллографа, вспышки света, звуковые сигналы... В общем виде — это поле на выходе (Пвых).