Загадка падающей кошки и фундаментальная физика

22
18
20
22
24
26
28
30

В группе молодых арабов был один человек, который привлек мое особое внимание. Это был старик; снежно-белая борода, тюрбан и одеяние придавали ему вид не менее почтенный, чем у любого из патриархов Доре. Звучным голосом, на своем благородном языке он читал что-то из какой-то книги, которую держал на коленях; одна рука его при этом любяще обнимала красивую длинношерстную кошку. Рядом с этим человеком я и бросился на землю. Ярость первого взгляда этого человека — казалось, его рассердило мое вторжение, — сменилась улыбкой, доброй, как у женщины, когда я начал гладить кошку и восхищаться ею. Во всем мире так — похвали чьего-то любимца, и этот человек все для тебя сделает: будет сражаться за тебя или даже одолжит тебе денег. Тот араб поделился со мной своим ужином.

«Ах, сын мой, — сказал он, — я люблю свою кошку больше, чем свое имущество, больше, чем коня. Она утешает меня. Она успокаивает меня лучше, чем дым. Аллах велик и добр; когда наши первые предки уходили одни в огромную пустыню, Он дал им двух друзей, которые должны были защищать и утешать их, — собаку и кошку. В тело кошки Он поместил дух кроткой женщины; в собаку — душу храброго мужчины. Это правда, сын мой; так сказано в этой книге»{16}.

Вернувшись к Уильяму Гордону Стейблсу, мы сделали полный круг в своем историческом исследовании. Антуан Паран предложил первое физическое объяснение переворачивания кошки, которому, хотя оно и было неверным, суждено было просуществовать почти 200 лет. Джеймс Клерк Максвелл и Джордж Габриэль Стокс подозревали, что в известном кошачьем фокусе еще предстоит открыть много интересного, но ни одному из них не удалось продвинуться в этом направлении из-за простого препятствия — ограниченных возможностей человеческого зрения. Если считать, что кошка способна перевернуться вверх головой при падении с высоты 60 см, как (мы предполагаем) говорил Максвелл, то получится, что кошка может перевернуться за 1/3 доли секунды. Слишком быстро, чтобы человеческий глаз мог разглядеть, что конкретно кошка проделывает во время падения.

К счастью, примерно в то же время, когда Максвелл и Стокс бились над загадкой падающей кошки, зарождалась новая технология, которая в будущем должна была позволить исследователям изучить движение кошки в свободном падении во всех подробностях. Однако там, где речь шла о кошачьей задаче, этой технологии суждено было породить куда больше вопросов, чем ответов.

3. Лошади в движении

Картины часто должны, по замыслу авторов, отражать какой-то момент в истории, сохранять его для потомков в том виде, в каком его увидел и воспринял сам автор. Иногда результат — завершенное произведение — содержит в себе более богатую историю, чем автор планировал или хотя бы мог представить себе.

Среди бесчисленного количества художественных произведений в Лувре есть картина Теодора Жерико 1821 г. под названием «Дерби в Эпсоме». Сегодня Жерико известен как один из пионеров романтизма — направления в изобразительном искусстве, где авторы стремились подчеркнуть эмоции, идеализировали прошлое и приукрашали природные ландшафты. Его самая знаменитая работа в этом ключе — «Плот „Медузы“» — написана в 1818–1819 гг.; на ней изображены уцелевшие моряки с военного французского фрегата «Медуза», отчаявшиеся и умирающие, дрейфующие на плоту в беспощадном бушующем море. Эта картина — стилизованное изображение катастрофы, произошедшей в 1816 г., — вызвала при первом показе немалые споры. Полотно «Дерби в Эпсоме», написанное всего на несколько лет позже, по тону почти противоположно первому: на нем изображены четыре лошади в разгар гонки и жокеи, понукающие своих скакунов и понуждающие их нестись к победе.

На взгляд современного зрителя, картина выглядит несколько странно, хотя требуется некоторое время, чтобы понять, в чем именно заключается странность. Все четыре лошади изображены в совершенно идентичной позе; это подразумевает, что они галопируют в точности в унисон, причем ноги их вытянуты настолько сильно, что сами лошади, кажется, парят в воздухе. Задние копыта смотрят подошвами вверх, тогда как передние копыта вытянуты далеко вперед. Сегодня большинство из нас понимает, по крайней мере интуитивно, что лошади так не бегают.

Жерико был не единственным художником, рисовавшим лошадей таким образом. Для живописцев XIX в. это была стандартная манера. Похожие изображения того, что сегодня называют летящим галопом, можно увидеть в художественных произведениях тысячелетней давности. Его серьезнейший исторический конкурент — поза вставшей на дыбы лошади, когда передние копыта подняты в воздух, а задние стоят на земле.

Художники рисовали животных подобным образом не от недостатка таланта. Дело скорее в том, что все живописцы были ограничены в своих возможностях тем, что можно увидеть невооруженным глазом. Цикл движения ног лошади на галопе по времени занимает долю секунды — слишком мало, чтобы человеческий глаз мог разглядеть подробности. Точно так же переворачивание кошки происходило слишком быстро, чтобы Максвелл и Стокс могли различить в нем отдельные элементы. Не имея точных знаний о движении лошади, художники, возможно, использовали в качестве визуальной аналогии движения других животных. В книге «Проблема галопирующей лошади» (The Problem of the Galloping Horse), вышедшей в начале XX в., сэр Рей Ланкестер утверждал, что древние люди, возможно, сконструировали летящий галоп на основе наблюдений за бегущими собаками{1}. Собаки бегают намного медленнее, чем лошади; кроме того, благодаря размеру собак намного проще разглядеть целиком в едином поле зрения. Манера бега собаки включает в себя позу, которую можно, в принципе, рассматривать как собачий эквивалент летящего галопа.

На протяжении большей части истории изучение движения животных было в значительной степени ограничено скоростью человеческого глаза. Ситуация начала меняться в середине XIX в., когда химия и оптика, объединившись, породили науку, технологию и искусство фотографии. Новому процессу суждено было сделать доступными для человека ответы на многие вопросы — и одновременно породить множество новых вопросов, показав, в частности, что галоп лошади и маневры падающей кошки устроены более хитроумно, чем кто-то в те времена мог вообразить.

Ключевые элементы, необходимые для развития фотографии, были известны задолго до XIX в. Одним из таких элементов была так называемая камера-обскура — ящик или помещение, полностью закрытое для внешнего света, за исключением одного небольшого отверстия. Свет, проходящий через него, порождает на стенке камеры высококачественное, хотя и перевернутое, изображение вида снаружи. Этот необычный способ формирования изображения на протяжении по крайней мере двух последних тысячелетий открывался и признавался не единожды. Самое раннее известное его описание можно найти у китайского философа и ученого Мо-цзы, и относится оно примерно к 400 г. до н. э.

Канон: Переворачивание тени происходит потому, что перекрестье сходится в точку, из которой продолжается уже тенью.

Объяснение: Вход света в кривую подобен полету стрелы, выпущенной из лука. То, что идет снизу, направляется наверх, а то, что идет сверху, направляется вниз. Ноги перекрывают свет снизу и потому образуют тень наверху; голова перекрывает свет сверху и потому образует тень внизу. Это происходит потому, что на определенном расстоянии имеется точка, которая совпадает со светом; поэтому переворот тени происходит внутри{2}.

Иными словами, свет, идущий от высокой точки снаружи ящика, проходит сквозь прокол и появляется в виде точки внизу изображения и наоборот. Среди тех, кто признавал и изучал изобразительные свойства камеры-обскуры, были греческий философ Аристотель (384–322 гг. до н. э.), мусульманский ученый Ибн-аль-Хайсам (965–1039) и итальянский энциклопедист Леонардо да Винчи (1452–1519).

Несмотря на давнюю историю, это открытие обрело популярность только в конце XVI в. благодаря итальянскому ученому Джамбаттисте делла Порта (ок. 1535–1615). В своей книге 1558 г. «Натуральная магия» (Magia naturalis) он привел подробное описание свойств камеры-обскуры по формированию изображений и описал наилучший способ наблюдать такое изображение в закрытой комнате{3}. Книга привлекла общественное внимание к этой технологии, которая затем сохраняла популярность на протяжении нескольких столетий. Камеру тогда рассматривали в первую очередь как источник развлечений, способ «волшебным образом» получать изображения в затемненной комнате, но художники разглядели в ней еще и прекрасную возможность без труда делать наброски пейзажей. К примеру, в «Техническом словаре» (Dictionnaire Technologique, 1823) мы находим следующее описание, в котором камера-обскура фигурирует как «темная комната». «Темная комната используется часто; она не только предлагает отдых и восстановление сил, формируя подвижные картинки разнообразной и очень забавной природы, когда получается окно, через которое можно наблюдать живописный горизонт, но ее также используют для быстрого рисования видов и ландшафтов или для рисования перспектив, которые без этого аппарата потребовали бы много времени и которые получаются необычайно верными»{4}.

Иллюстраторам, работавшим с камерой-обскурой, оставалось сделать всего лишь небольшой шаг, чтобы представить себе, насколько более изящным стал бы этот процесс, если бы изображения можно было записывать автоматически, без вмешательства художника.

Другим ключевым элементом были химические вещества, необходимые для того, чтобы воплотить мечту о записи изображений в реальность. Химикам давно было известно, что некоторые материалы вступают в различные реакции и меняют цвет — либо чернеют, либо белеют, когда подвергаются действию света, и что эти изменения могут происходить относительно быстро. В 1717 г., к примеру, немецкий ученый и врач Иоганн Генрих Шульце открыл, что смесь мела, азотной кислоты и серебра на свету чернеет, и воспользовался этой реакцией, чтобы изумить и позабавить своих друзей. Он налил приготовленную смесь в бутылку, а бутылку обернул бумагой с вырезанными в ней словами. На свету смесь под вырезами потемнела, а потом достаточно было взболтать бутылку, чтобы отпечатавшиеся в ней слова исчезли{5}. Шульце, правда, не использовал этот эффект для чего бы то ни было, кроме развлечений.

Вслед за Шульце и другие любознательные люди стали замечать, что при помощи подходящих трафаретов можно получать узоры в некоторых химических смесях. Однако ни одна из этих демонстраций не тянет на полноценную «фотографию», поскольку ни в одной из них соответствующий химический процесс не использовался для верного отображения сцены в том виде, в каком ее видит человеческий глаз. Столкновение, а затем и союз камеры и химического процесса в конечном итоге будет обретен благодаря блестящему французскому изобретателю, при значительной помощи со стороны его старшего брата, в начале XIX в.

Жозеф Нисефор Ньепс родился в 1765 г. в богатой и образованной семье в городе Шалон-сюр-Сон в Восточной Франции. Его отец был успешным юристом, а семья столетиями занимала высокое социальное положение благодаря богатству и немалым владениям. Так что Нисефор мог позволить себе идти на поводу у природного любопытства и развивать свои таланты в области механики. Его брат Клод, старше Нисефора примерно на два года, тоже был одаренным изобретателем и разделял его интересы. Рассказывают, что оба многому научились у своего наставника-священника и что в свободное время мальчики вместе делали маленькие деревянные модельки разных устройств. Нисефор с юности мечтал стать священником и после получения образования преподавал в католическом колледже.