Теорема века. Мир с точки зрения математики

22
18
20
22
24
26
28
30

Этого еще недостаточно, потому что таким образом мы имели бы не все несоизмеримые числа, а только некоторые из них.

Но представим себе прямую, разделенную на две полупрямые. Каждая из этих полупрямых явится в нашем воображении как полоса известной ширины; притом эти полосы будут покрывать одна другую, потому что между ними не должно быть никакого промежутка. Когда мы пожелаем воображать наши полосы все более и более узкими, общая часть представится нам точкой, которая будет существовать постоянно; так что мы допустим в качестве интуитивной истины, что если прямая разделена на две полупрямые, то общая граница этих двух прямых есть точка; мы узнаем здесь концепцию Кронекера, согласно которой несоизмеримое число рассматривается как граница, общая двум классам рациональных чисел.

Таково происхождение непрерывности второго порядка, которая и является математической непрерывностью в собственном смысле.

Вывод. В итоге можно сказать, что разум обладает способностью создавать символы; благодаря этой способности он построил математическую непрерывность, которая представляет собой только особую систему символов. Его могущество ограничено лишь необходимостью избегать всякого противоречия; однако разум пользуется своей силой исключительно в том случае, когда опыт доставляет ему для этого основание.

В занимающем нас случае этим основанием было понятие физической непрерывности, выведенное из непосредственных данных чувственного восприятия.

Но это понятие приводит к ряду противоречий, от которых надо последовательно освобождаться. Таким образом, мы вынуждены воображать все более и более усложненную систему символов. Та система, на которой мы, наконец, останавливаемся, не только свободна от внутреннего противоречия – ведь она уже оказалась такой на всех пройденных этапах, – но она также не противоречит различным так называемым интуитивным положениям, которые извлечены из более или менее обработанных эмпирических понятий.

Измеримая величина. Величины, которые мы изучали до сих пор, не были измеримыми, мы умели сказать, которая из двух величин является большей, но в два ли, в три ли раза она больше – этого мы не умели сказать.

В самом деле, до сих пор я занимался только порядком, в котором наши члены были размещены. Но для большинства применений этого недостаточно. Надо научиться сравнивать промежутки, отделяющие два каких-нибудь члена. Только при этом условии непрерывность делается измеримой и в ней оказывается возможным применить арифметические операции.

Это можно сделать только при помощи нового и особого соглашения. Условливаются, что в таком-то случае интервал, заключенный между членами А и В, равен интервалу, отделяющему С от D. Так, в начале нашей работы мы исходили из последовательности целых чисел и предполагали, что между двумя последовательными членами ее помещены n промежуточных; эти-то новые члены будут теперь в силу соглашения рассматриваться как равноотстоящие.

Отсюда-то и вытекает способ определения сложения двух величин; так, если интервал АВ по определению равен интервалу CD, то интервал AD по определению будет суммой интервалов АВ и CD.

Это определение в весьма значительной мере произвольно. Однако оно произвольно не вполне. Оно подчинено известным соглашениям, например, правилам коммутативности и ассоциативности сложения. Но как только выбранное определение удовлетворяет этим правилам, выбор делается безразличным, а более точное определение – бесполезным.

Различные замечания. Мы можем поставить перед собой несколько важных вопросов:

1. Исчерпывается ли творческое могущество разума созданием математической непрерывности?

Нет: труды Дюбуа-Реймона служат поразительным доказательством этого.

Известно, что математики различают бесконечно малые разных порядков, так что бесконечно малые второго порядка не только бесконечно малы в абсолютном смысле, но еще и являются таковыми по отношению к бесконечно малым первого порядка. Нетрудно представить себе бесконечно малые дробного и даже иррационального порядка, и, таким образом, мы снова находим ту последовательность математической непрерывности, которой посвящены предшествующие страницы. Более того: существуют такие бесконечно малые величины, которые бесконечно малы по отношению к бесконечно малым первого порядка и, напротив, бесконечно велики по отношению к бесконечно малым порядка 1 + ε, как бы ни было мало ε. Итак, вот еще новые члены, разместившиеся в нашем ряду; и если мне будет позволено вернуться к терминологии, которой я недавно держался и которая является достаточно удобной, хотя еще и не используется широко, я скажу, что этим создан вид непрерывности третьего порядка.

Легко было бы идти дальше, но это было бы бесполезной игрой ума; пришлось бы воображать себе одни символы без возможности их применения; на это никто не отважится. Даже непрерывность третьего порядка, к которой приводит рассмотрение различных порядков бесконечно малых, сама по себе является слишком мало полезной, чтобы приобрести право быть упоминаемой, и геометры рассматривают ее только просто как курьез. Разум пользуется своей творческой силой только тогда, когда опыт принуждает его к этому.

2. Раз мы обладаем понятием математической непрерывности, гарантированы ли мы от противоречий, аналогичных тем, которые положили начало этому понятию?

Нет; и я сейчас дам этому пример.

Надо быть очень сведущим, чтобы не считать очевидным, что каждая кривая имеет касательную: и в самом деле, если представлять себе эту кривую и некоторую прямую как две узкие полосы, то всегда можно расположить их так, что они будут иметь общую часть, не пересекаясь. Теперь вообразим себе, что ширина этих двух полос бесконечно уменьшается; существование их общей части будет всегда возможным, и в пределе, так сказать, две линии будут иметь общую точку, не пересекаясь, т. е. они будут взаимно касаться друг друга.

Геометр, рассуждающий таким образом, сделал бы – сознательно или нет – то же самое, что мы сделали раньше, желая доказать, что две пересекающиеся линии имеют общую точку; и его интуиция могла бы показаться такой же законной.