Теорема века. Мир с точки зрения математики

22
18
20
22
24
26
28
30

Но наиболее поразительным примером является принцип Карно. Карно установил его, исходя из ложных гипотез. Когда обнаружили, что теплота не обладает свойством неуничтожаемости, но что она может быть преобразована в работу, идеи Карно были совершенно оставлены; но затем Клаузиус возвратился к ним и доставил им окончательное торжество. Теория Карно в ее первоначальном виде выражала рядом с верными отношениями также и другие, которые были неточны, являлись обломками старых идей; но присутствие последних не нарушало реальности первых. Клаузиус просто откинул эти последние, как срезают у дерева засохшие ветви, и в результате появился второй основной закон термодинамики. Это были все те же отношения, хотя по крайней мере внешне они были отношениями уже между другими предметами. Даже рассуждения Карно не потеряли от этого своей пригодности – они ошибочно применялись к ложному содержанию, но форма, т. е. самое существенное, была правильна.

Из предыдущего выясняется также значение общих принципов, каковыми являются принцип наименьшего действия и принцип сохранения энергии.

Эти принципы имеют весьма высокую ценность; они были получены путем отыскания того, что является общим элементом в множестве физических законов; поэтому они образуют как бы квинтэссенцию бесчисленной массы наблюдений. Однако из их общности вытекает следствие, на которое я обращал внимание читателя в главе VIII и которое состоит в том, что они не могут не подтвердиться. Так как мы не можем дать общее определение энергии, то принцип сохранения энергии просто означает, что существует нечто, что остается постоянным. Если так, то сколько бы новых сведений о мире ни дал нам будущий опыт, мы заранее уверены, что будет нечто, остающееся постоянным, что мы сможем назвать энергией.

Значит ли это, что рассматриваемый принцип лишен смысла, что он обращается в тавтологию? Нисколько: он означает, что различные вещи, которым мы даем наименование энергии, связаны истинным сродством; он утверждает между ними реальное отношение. Но если принцип имеет смысл, то он может оказаться ложным; возможно, что мы не имеем права распространять до бесконечности область его применения, и тем не менее оправдание его, пока он рассматривается в узком смысле слова, является заранее обеспеченным. По какому же признаку мы узнаем, что достигнут крайний предел его законного распространения? Просто потому, что он перестанет быть нам полезным, т. е. перестанет давать нам возможность верно предвидеть новые явления. Тогда мы будем уверены, что утверждаемое отношение не является уже реальным, ибо иначе оно было бы и плодотворным; опыт, не противореча непосредственному новому расширению принципа, тем не менее осудит его.

Физика и механицизм. Большинство теоретиков обнаруживает постоянное предрасположение к объяснениям; заимствованным из области механики или динамики. Одни были бы довольны, если бы могли свести все явления к движению частиц, взаимно притягивающихся по известным законам. Другие более требовательны: они хотели бы устранить действия на расстоянии, у них частицы двигались бы по прямолинейным путям и сходили бы с этих путей только вследствие столкновений. Иные же, подобно Герцу, устраняют также и силы, но при этом подчиняют частицы геометрическим связям, похожим, например, на те, которые имеют место в наших суставах; они некоторым образом хотели бы свести динамику к своего рода кинематике. Словом, все хотели бы втиснуть природу в определенную форму, вне которой их ум не может найти удовлетворения. Но является ли природа достаточно гибкой для этого?

Мы исследуем этот вопрос в главе XII по поводу теории Максвелла. Мы увидим, что всякий раз, когда выполняются принцип сохранения энергии и принцип наименьшего действия, существует не только одно механическое истолкование, но и бесконечное множество их. На основании известной теоремы Кёнига о механизмах можно было бы показать, что существует бесконечное множество объяснений явлений как связями по способу Герца, так и с помощью центральных сил. Несомненно, столь же легко было бы доказать, что все явления всегда можно объяснить простыми соударениями.

Разумеется, для этого надо принять, что нельзя удовольствоваться общераспространенным представлением о материи в том виде, как о ней дают нам знать наши чувства и движения которой мы наблюдаем непосредственно. Пришлось бы или предположить, что эта материя состоит из атомов, внутренние движения которых ускользают от нас, а доступным нашим чувствам оказывается лишь перемещение целого, или пришлось бы постулировать одну из тонких субстанций, которые под названием эфира или под каким-либо другим названием во все времена играли столь значительную роль в физических теориях.

Часто идут еще далее: рассматривают эфир как единственную первичную материю или даже как единственную истинную материю. Наиболее умеренные считают обычную материю конденсированным эфиром – утверждение, не имеющее в себе ничего шокирующего ум; но другие ограничивают ее значение еще более и видят в ней только геометрическое место некоторых особенностей состояний эфира. Например, по лорду Кельвину, то, что мы называем материей, есть лишь место точек, где эфир испытывает вихревое движение; по Риману, это – место точек, в которых эфир постоянно уничтожается; у других, более современных авторов, Вихерта или Лармора, это – место точек, где эфир подвергается кручению совершенно особого рода. Я спросил бы желающих присоединиться к одной из этих точек зрения, по какому праву на выдаваемый за истинную материю эфир можно распространять механические свойства, наблюдаемые у обычной материи, которая [по этому воззрению] является ненастоящей.

Прежние невесомые жидкости – теплород, электричество и пр. – были оставлены, когда замечено было, что теплоте не свойственна неуничтожаемость. Но тут было и другое основание. Возведением их в ранг субстанций утверждалась их индивидуальность; они становились как бы разделенными друг от друга глубокой пропастью. Эту пропасть потребовалось засыпать, когда стало живее чувствоваться единство природы, когда были замечены тесные внутренние связи между всеми ее частями. Прежние физики размножением своих жидкостей не только создавали ненужные субстанции, но и разрывали реальные связи. Недостаточно, чтобы теория не утверждала неверных соотношений; надо, чтобы она не скрывала истинных соотношений.

А наш эфир – существует ли он в действительности? Известно, откуда явилась уверенность в его существовании. Свету требуется несколько лет, чтобы дойти до нас от удаленной звезды. В это время он уже не находится на звезде и еще не находится на Земле. Надо допустить, что он где-то находится, что он имеет, так сказать, некоторый материальный носитель.

Можно выразить ту же идею в более математической и более абстрактной форме. Мы констатируем лишь изменения, которым подвергаются частицы материи; например, мы видим, как наша фотографическая пластинка испытывает влияние процессов, совершавшихся в раскаленной массе звезды много лет назад. Но в обычной механике состояние изучаемой системы определяется состоянием ее в непосредственно предшествующий момент; благодаря этому система удовлетворяет известным дифференциальным уравнениям.

Напротив, если бы мы отрицали эфир, то состояние материального мира зависело бы не только от непосредственно предшествующего состояния, но и от состояний гораздо более давнего времени; такая система удовлетворяла бы уравнениям в конечных разностях. Чтобы избегнуть этого отклонения от общих законов механики, мы и придумали эфир.

Изложенное выше заставляет нас наполнить эфиром только междупланетное пространство, но не пропитать им внутренность самих материальных сред. Физо идет дальше. В своем опыте, заставляя интерферировать лучи, прошедшие через движущийся воздух или воду, он, по-видимому, показывает нам две различные среды, проникающие друг друга и смещающиеся одна относительно другой. Можно сказать, что здесь вы касаетесь эфира пальцем.

Однако можно вообразить опыты, которые ввели бы нас в еще более тесное соприкосновение с ним. Предположим, что закон Ньютона, утверждающий равенство действия и противодействия, будучи приложен только к материи, оказался неверным, и нам удалось это установить. Геометрическая сумма всех сил, приложенных ко всем материальным частицам, не равнялась бы нулю. Тогда пришлось бы либо изменить всю механику, либо ввести эфир так, чтобы действие, испытываемое материей, компенсировалось противодействием, оказываемым материей на что-то другое. Или далее, пусть будет доказано, что световые и электрические явления видоизменяются вследствие движения Земли. Тогда пришлось бы заключить, что ход этих явлений может указать не только относительные перемещения материальных тел, но и так называемые их абсолютные движения.

В таком случае стало бы необходимым допустить существование эфира, чтобы эти «абсолютные» перемещения были отнесены не к пустому пространству, а к некоторой конкретной вещи.

Придем ли мы к нему когда-нибудь? Я не надеюсь и сейчас скажу почему; однако надежда на это не так нелепа, раз она свойственна другим.

Так, если бы теория Лоренца, о которой я буду говорить подробнее в главе XIII, была справедлива, то закон Ньютона прилагался бы не к одной только материи и отклонения от него не были бы очень далеки от значений, доступных наблюдению.

С другой стороны, влияние движений Земли на электрические и оптические явления служило предметом многих исследований. Результаты всегда были отрицательными. Но уже одно то, что эти опыты были предприняты, показывает, что не было твердой уверенности в результатах, а по господствующим теориям компенсация является лишь приближенной, и можно надеяться, что более точные методы принесут положительные результаты.

Я считаю такие надежды призрачными; тем не менее любопытно показать, что успех этого рода опытов некоторым образом открыл бы нам новый мир.

Теперь я позволю себе сделать отступление, чтобы объяснить, почему я, вопреки Лоренцу, не думаю, что когда-нибудь более точные наблюдения могут обнаружить что-либо иное, кроме относительных перемещений материальных тел. Произведенные ранее опыты имели целью обнаружить члены первого порядка. Результат был отрицательный; могло ли это быть делом случая? Этого никто не мог допустить; стали искать общее объяснение, и Лоренц нашел его: он показал, что члены первого порядка взаимно уничтожаются. Это не имело места для членов второго порядка. Тогда были произведены более точные опыты, которые снова дали отрицательный результат. Это опять не могло произойти случайно – требовалось объяснение, которое и было дано. За объяснением дело никогда не станет: гипотезы представляют собой неисчерпаемый фонд.