Теорема века. Мир с точки зрения математики

22
18
20
22
24
26
28
30

Резюмируя предыдущее, скажем, что известные раньше явления систематизируются все лучше и лучше. Но и новые явления требуют себе места; большинство их, подобно явлению Зеемана, нашло его тотчас же. Но мы имеем также катодные лучи, рентгеновские лучи, лучи урана и радия. Тут целый мир, о существовании которого никто и не догадывался. Всех этих неожиданных гостей надо определить к месту!

Никто не может еще предвидеть, какое именно место они займут. Но я думаю, что они не разрушат общего единства, а скорее дополнят его собою. В самом деле, с одной стороны, новые излучения представляются связанными с явлениями люминесценции; они не только возбуждают флюоресценцию, но иногда возникают при тех же условиях, что и эта последняя. Далее, они состоят в родстве с теми причинами, которые заставляют проскакивать искру под действием ультрафиолетового света. Наконец (и это особенно важно), во всех этих явлениях предполагают участие настоящих ионов, правда, обладающих несравненно более значительными скоростями, чем скорости ионов в электролитах. Все это довольно неясно; но точность придет со временем.

Фосфоресценция, действие света на искру были до сих пор областями сравнительно изолированными и поэтому менее привлекавшими исследователей. Теперь можно надеяться, что мы близки к построению нового пути, который облегчит их связь с универсальной наукой.

Мы не только обнаруживаем новые явления, но и в тех, которые считались известными, нам открываются неожиданные аспекты. В свободном эфире законы сохраняют свою величественную простоту; но материя в собственном смысле представляется все более и более сложной; все, что о ней говорится, всегда имеет только приближенное значение, и наши формулы ежеминутно требуют все новых членов.

Тем не менее это не разрушает общего плана. Отношения, установленные между вещами в предположении простоты последних, сохраняются и после того, как мы узнаем об их сложности, – а только это и важно. Правда, наши уравнения становятся все более и более сложными, для того чтобы по возможности ближе подойти к сложности природы; но в отношениях, которые позволяют выводить одни уравнения из других, не произошло никаких перемен. Одним словом, форма уравнений устояла.

Возьмем в качестве примера законы отражения света. Френель вывел их из простой и увлекательной теории, которая, по-видимому, подтверждалась опытом. Впоследствии более точные исследования доказали, что это подтверждение было лишь приближенным, и обнаружили повсюду следы эллиптической поляризации. Но тотчас же благодаря той точке опоры, которую мы имели в первом приближении, найдена была причина этих аномалий, состоящих в наличии поглощающего слоя: в существенных чертах теория Френеля сохранила свое значение.

Здесь только нельзя удержаться от следующего соображения. Все эти отношения остались бы незамеченными, если бы с самого начала существовала догадка о сложности взаимодействующих объектов. Давно уже было сказано, что если бы инструменты Тихо были в десять раз точнее, то мы никогда не имели бы ни Кеплера, ни Ньютона, ни астрономии. Для научной дисциплины составляет несчастье возникнуть слишком поздно, когда средства наблюдения стали слишком совершенными. В таком положении ныне находится физическая химия: третий и четвертый десятичные знаки причиняют большие затруднения ее основателем; по счастью, это – люди крепкой веры.

По мере того как продвигается изучение свойств материи, мы видим, как вступает в свои права идея непрерывности. Со времени работ Эндрюса и ван дер Ваальса мы уяснили способ, каким происходит переход от жидкого состояния к газообразному: этот переход не является внезапным. Точно так же нет и пропасти между жидким и твердым состояниями; в Трудах последнего съезда физиков наряду с работой о затвердевании жидкостей мы встречаем доклад о текучести твердых тел.

При такой тенденции простота, без сомнения, утрачивается: прежде некоторое явление изображалось несколькими прямыми, теперь приходится состыковывать эти прямые при помощи более или менее сложных кривых. Зато очень выигрывает единство. Эти разрозненные категории успокаивали ум, но не удовлетворяли его.

Наконец, физические методы завоевали новую область – химию; возникла физическая химия. Она еще очень молода, но уже видно, что она позволит нам связать друг с другом такие явления, как электролиз, осмос, движение ионов.

Что можно заключить из этого беглого очерка? То, что в итоге произошло приближение к единству; правда, движение было не таким быстрым, как этого ожидали пятьдесят лет назад, самые пути не всегда совпадали с ожидаемыми; но в конце концов приобретения оказались весьма значительными.

Глава XI. Исчисление вероятностей

Без сомнения, читатель будет удивлен, встретив здесь размышления об исчислении вероятностей.

Какое отношение может оно иметь к методу физических наук? А между тем вопросы, которые я хочу поднять, не разрешая их, естественно встают перед философом, желающим размышлять о физике, и уже в двух предыдущих главах я принужден был несколько раз использовать выражения «вероятность» и «случайность».

Предвидение фактов, говорил я выше, может быть только вероятностным. «Как бы прочно обоснованным ни казалось нам наше предвидение, все же мы никогда не имеем абсолютной уверенности в том, что оно не будет опровергнуто опытом, предпринятым в целях его проверки. Однако вероятность часто бывает достаточно велика, чтобы практически мы могли ею удовлетвориться».

Затем несколько дальше я добавил:

«Рассмотрим, какую роль играет в наших обобщениях уверенность в простоте. Пусть мы установили, что некоторый простой закон подтверждается для достаточно большого числа отдельных случаев; тогда мы отказываемся допустить, что такое удачное совпадение было простой случайностью…»

Таким образом, во множестве случаев физик находится в таком же положении, как игрок, рассчитывающий свои шансы. Всякий раз, когда он применяет метод индукции, он более или менее сознательно пользуется исчислением вероятностей.

Ввиду этого я принужден сделать отступление и прервать наше изучение метода физических наук, чтобы подробнее рассмотреть, какое значение имеет это исчисление и какого доверия оно заслуживает.

Уже одно название «исчисление вероятностей» представляет собой парадокс; вероятность, в противоположность достоверности, есть то, чего не знают; как же можно вычислять то, о чем нет никаких знаний? Между тем многие выдающиеся ученые занимались этим вычислением, и никто не станет отрицать, что наука уже извлекла из него некоторую пользу. Как же объяснить это явное противоречие?