Теорема века. Мир с точки зрения математики

22
18
20
22
24
26
28
30

Была ли определена вероятность? И может ли она быть определена? И если нет, то как мы решаемся рассуждать о ней? Определение, – скажут, – очень просто: вероятность какого-нибудь события есть отношение числа случаев, благоприятствующих этому событию, к полному числу возможных случаев.

Простой пример даст нам понять, как неполно это определение. Я бросаю две игральные кости; какова вероятность того, что по крайней мере на одной из них выпадет 6? Каждая кость может выпасть шестью различными способами: число возможных случаев есть 6 × 6 = 36; число благоприятствующих случаев есть 11, вероятность равна 11/36.

Таково правильное решение. Но не могу ли я с таким же успехом сказать: числа очков, выпавшие на обеих костях, могут образовать (6 × 7)/2 = 21 различных комбинаций; среди этих комбинаций 6 благоприятствующих; вероятность равна 6/21.

Почему первый способ рассчитывать возможные случаи более законен, чем второй? Во всяком случае наше определение нам этого не указывает.

Таким образом, приходится дополнить это определение, говоря: «…к полному числу возможных случаев при условии, чтобы эти случаи были равновероятны». И вот мы пришли к определению вероятного при помощи вероятного же.

Как мы узнаем, что два возможных случая равновероятны? Не является ли это результатом некоторого условного соглашения? Если мы в начале каждой проблемы явно укажем условное соглашение, то все пойдет хорошо; нам придется только применять правила арифметики и алгебры, и мы доведем вычисление до конца так, что результат не оставит места никакому сомнению. Но если мы желаем сделать малейшее применение этого результата, то необходимо будет доказать, что наши условные соглашения были законны, и мы как раз натолкнемся на то затруднение, которое думали обойти.

Нам могут сказать: простого здравого смысла достаточно чтобы указать, какое соглашение следует допустить. Но вот Бертран, курьеза ради, разобрал простую задачу: «Какова вероятность того, чтобы в окружности хорда была больше стороны вписанного равностороннего треугольника?» Знаменитый геометр допустил последовательно два соглашения, одинаково, по-видимому, внушаемые здравым смыслом, и нашел в одном случае 1/2, в другом 1/3.

Заключение, которое по всей видимости вытекает из всего этого, состоит в том, что исчисление вероятностей есть наука бесполезная, что нужно с недоверием относиться к тому неясному инстинкту, который мы называем здравым смыслом и к которому обращаемся при установлении наших соглашений.

Тем не менее мы не можем подписаться под этим заключением; мы не можем обойти этот неясный инстинкт; без него наука была бы невозможна, без него мы не могли бы ни открыть закон, ни применять его. Имеем ли мы, например, право говорить о законе Ньютона? Без сомнения, многочисленные наблюдения согласуются с ним; но не есть ли это результат простой случайности? И далее, откуда мы знаем, что этот закон, верный на протяжении стольких веков, будет верным и на будущий год? На это возражение вы можете лишь ответить: «это очень мало вероятно».

Но примем некий закон; я верю, что, опираясь на него, я могу вычислить положение Юпитера на целый год. Однако имею ли я на это право? Кто мне сказал, что за это время какая-нибудь гигантская масса, наделенная огромной скоростью, не пройдет вблизи Солнечной системы и не произведет непредвиденных возмущений? И здесь ничего не остается ответить, как только: «это очень мало вероятно».

С этой точки зрения все науки суть только бессознательные приложения исчисления вероятностей; осудить это исчисление – значит осудить всю науку в целом.

Я не стану долго останавливаться на научных проблемах, где участие исчисления вероятностей является более очевидным.

Такова прежде всего задача интерполяции, где по известному числу значений функции стараются определить промежуточные значения. Упомяну также о знаменитой теории погрешностей наблюдений (к которой еще вернусь позднее), о кинетической теории газов – этой общеизвестной гипотезе, по которой предполагается, что каждая газовая молекула описывает крайне сложную траекторию, но где по свойству закона больших чисел явления, взятые в среднем – в форме, единственно доступной для наблюдения, – подчиняются простым законам, каковы законы Мариотта и Гей-Люссака.

Все эти теории покоятся на законах больших чисел, так что падение исчисления вероятностей, очевидно, увлекло бы их за собой. Правда, они представляют только частный интерес и, за исключением интерполяции, это были жертвы, с которыми можно было бы примириться. Но, как я указал выше, речь шла бы не об этих только частных жертвах – речь шла бы о всей науке, законность которой была бы подвергнута сомнению.

Я знаю, что мне могли бы сказать: «Мы ничего не знаем, и все-таки мы должны действовать. Но мы не имеем времени заняться исследованием, достаточным для того, чтобы рассеять наше незнание; кроме того, подобное исследование потребовало бы бесконечного времени. Следовательно, мы должны решаться, не обладая знанием; надо действовать наудачу и следовать правилам, не слишком им доверяя. Я знаю не то, что такая-то вещь истинна, но то, что для меня все же лучше действовать так, как если бы она была истинна». Исчисление вероятностей и, следовательно, наука имели бы не более как только практическое значение.

К сожалению, таким путем трудность не была бы устранена. Игрок желает попытать счастья, он спрашивает у меня совета. Если я ему дам совет, я буду руководствоваться исчислением вероятностей, но я не гарантирую ему успеха. Это то, что я назову субъективной вероятностью. В этом случае можно было бы довольствоваться объяснением, которое я привел выше. Но предположим, что при игре присутствует наблюдатель, который отмечает все ходы, и что игра продолжается долгое время; когда он подведет итог в своей записной книжке, он констатирует, что события распределены согласно законам исчисления вероятностей. Это – то, что я назову объективной вероятностью, и именно это явление нужно объяснить.

Существует множество страховых обществ, которые применяют правила исчисления вероятностей; они выдают своим акционерам дивиденды, объективную реальность которых невозможно оспорить. Чтобы объяснить это, недостаточно ссылаться на наше незнание и на необходимость действовать.

Таким образом, абсолютный скептицизм не может быть принят; мы должны быть осторожны, но не должны все огульно осуждать; необходимо подробное исследование.

I. Классификация проблем вероятности. Чтобы классифицировать проблемы, которые касаются такой темы, как вероятность, можно стать на несколько различных точек зрения и прежде всего на точку зрения общности.

Выше я сказал, что вероятность есть отношение числа благоприятствующих случаев к числу возможных случаев. То, что за недостатком лучшего термина я называю общностью, будет возрастать с числом возможных случаев. Это число может быть конечным, как, например, в случае, когда рассматривается бросание костей, где число возможных случаев есть 36. Это – первая степень общности.