Теорема века. Мир с точки зрения математики

22
18
20
22
24
26
28
30

Но следует ли из этого, что нужно отказаться от науки и изучать только мораль? И разве моралисты, когда они сходят со своей кафедры, остаются на недосягаемой высоте?

Глава II. Будущее математики

Лучший метод для предвидения будущего развития математических наук заключается в изучении истории и нынешнего состояния этих наук.

Но разве такой прием исследования не является для нас, математиков, некоторым образом профессиональным? Ведь мы привыкли экстраполировать, т. е. выводить будущее из прошедшего и настоящего; а так как ценность этого приема нам хорошо известна, то мы и не рискуем впасть в заблуждение относительно надежности тех результатов, которые мы получим с его помощью.

В свое время не было недостатка в прорицателях несчастья. Они охотно повторяли, что все проблемы, допускающие решение, уже были разрешены и что следующим поколениям придется довольствоваться кое-какими не замеченными ранее мелочами. К счастью, пример прошлого нас успокаивает. Уже не раз математики полагали, что все проблемы ими разрешены или, по крайней мере, что ими установлен перечень задач, которые допускают решение. Но вслед за тем смысл самого слова «решение» расширялся, проблемы, считавшиеся неразрешимыми, становились наиболее интересными; уму представлялись новые задачи, о которых раньше никто и не думал. Для греков хорошим решением было такое, которое выполняется только линейкой и циркулем; потом хорошим стали считать решение в том случае, если оно получается с помощью извлечения корней; наконец, ограничились требованием употреблять для решения исключительно алгебраические или логарифмические функции. Таким образом, предсказания пессимистов ни разу не сбылись, они вынуждены были делать уступку за уступкой, так что в настоящее время, я полагаю, их больше нет.

Но если их уже нет, то я не собираюсь с ними сражаться. Мы все уверены, что развитие математики будет продолжаться; весь вопрос в том, в каком именно направлении. Мне могут ответить: «во всех направлениях», – и это будет отчасти справедливо; но если бы это было верно вполне, то это нас несколько устрашило бы. Быстро возрастая, наши богатства вскоре образовали бы нечто столь громоздкое, что мы оказались бы перед этой непостижимой грудой не в лучшем положении, чем были раньше перед неизвестной нам истиной.

Историку и даже физику приходится делать выбор между фактами; мозг ученого – этот маленький уголок вселенной – никогда не сумеет вместить в себя весь мир целиком; поэтому среди бесчисленных фактов, которыми нас засыпает природа, необходимо будут такие, которые мы оставим в стороне, и будут другие, которые мы сохраним. То же самое, a fortiori, имеет место и в математике: математик тоже не в состоянии воспринять все факты, которые в беспорядке представляются его уму, тем более что здесь ведь он сам – я хочу сказать, его прихоть – создает эти факты. Ведь это он строит новую комбинацию из отдельных ее частей, сближая между собой их элементы; лишь в редких случаях природа приносит ему вполне готовые комбинации.

Бывают, конечно, и такие случаи, когда математик берется за ту или иную проблему, желая удовлетворить тем или иным требованиям физики; случается, что физик или инженер предлагают математику вычислить какое-нибудь число; которое им нужно знать для того или иного применения. Следует ли отсюда, что все мы, математики, должны ограничиться выжиданием таких требований и, вместо того чтобы свободно культивировать удовольствия, не иметь другой заботы, как применяться ко вкусам нашей клиентуры? Не должны ли математики, имея единственной целью приходить на помощь испытателям природы, только от последних ждать распоряжений? Можно ли оправдать такой взгляд? Конечно, нет! Если бы мы не культивировали точных наук ради них самих, то мы не создали бы математического орудия исследования, и в тот день, когда от физика пришел бы требовательный приказ, мы оказались бы безоружными.

Ведь физики приступают к изучению того или другого явления не потому, что какая-нибудь неотложная потребность материальной жизни сделала это изучение необходимым, и они правы. Если бы ученые XVIII столетия забросили электричество по той причине, что оно в их глазах было только курьезом, лишенным всякого практического интереса, то мы не имели бы в XX столетии ни телеграфа, ни электрохимии, ни электротехники. Будучи вынуждены сделать выбор, физики, таким образом, не руководствуются при этом единственно вопросом полезности. Как же именно поступают они, выбирая среди фактов природы? Нам нетрудно ответить на этот вопрос: их интересуют именно те факты, которые могут привести к открытию нового закона; другими словами, те факты, которые сходны с множеством других фактов, те, которые представляются нам не изолированными, а как бы тесно связанными в одно целое с другими фактами. Отдельный факт бросается в глаза всем – и невежде и ученому. Но только истинный физик способен подметить ту связь, которая объединяет вместе многие факты глубокой, но скрытой аналогией. Анекдот о яблоке Ньютона знаменателен, хотя он, вероятно, и не соответствует истине; будем поэтому говорить о нем как о действительном факте. Но ведь и до Ньютона, надо полагать, немало людей видели, как падают яблоки; а между тем никто не сумел сделать отсюда никакого вывода. Факты остались бы бесплодными, не будь умов, способных делать между ними выбор, отличать те из них, за которыми скрывается нечто, и распознавать это нечто, умов, которые под грубой оболочкой факта чувствуют, так сказать, его душу.

Буквально то же самое проделываем мы и в математике. Из различных элементов, которыми мы располагаем, мы можем создать миллионы разнообразных комбинаций; но какая-нибудь одна такая комбинация, сама по себе, абсолютно лишена значения; нам могло стоить большого труда создать ее, но это ничему не служит, разве что может быть предложено в качестве школьного упражнения. Другое будет дело, когда эта комбинация займет место в ряду аналогичных ей комбинаций, и когда мы подметим эту аналогию, перед нами будет уже не факт, а закон. И в этот день истинным творцом-изобретателем окажется не тот рядовой работник, который старательно построил некоторые из этих комбинаций, а тот, кто обнаружил между ними родственную связь. Первый видел один лишь голый факт, и только второй познал душу факта. Часто для обнаружения этого родства бывает достаточно изобрести одно новое слово, и это слово становится творцом; история науки может доставить нам множество знакомых вам примеров.

Знаменитый венский философ Мах сказал, что роль науки состоит в создании экономии мысли, подобно тому как машина создает экономию силы. И это весьма справедливо. Дикарь считает с помощью своих пальцев или собирая камешки. Обучая детей таблице умножения, мы избавляем их на будущее от бесчисленных манипуляций с камешками. Кто-то как-то узнал, с помощью ли камней или как-либо иначе, что 6 раз 7 составляет 42; ему пришла идея отметить этот результат, и вот благодаря этому мы не имеем больше надобности повторять вычисление сначала. Этот человек не потерял понапрасну своего времени даже в том случае, если он вычислял единственно ради собственного удовольствия; его манипуляция отняла у него не более двух минут, а между тем потребовалось бы целых два миллиарда минут, если бы миллиард людей должен был после него повторять ту же манипуляцию.

Итак, важность какого-нибудь факта измеряется его продуктивностью, т. е. тем количеством мысли, какое он позволяет нам сберечь.

В физике фактами большой продуктивности являются те, которые входят в очень общий закон, ибо благодаря этому они позволяют предвидеть весьма большое количество других фактов; то же мы видим и в математике. Я занялся сложным вычислением и, наконец, после большого труда пришел к некоторому результату; я не был бы вознагражден за свой труд, если бы благодаря полученному результату я не оказался в состоянии предвидеть результаты других подобных вычислений и уверенно направлять их, избегая тех блужданий ощупью, на которые я должен был обречь себя в первый раз. И наоборот, мое время не было бы потеряно, если бы эти самые блуждания привели меня к открытию глубокой аналогии изучаемой мною проблемы с гораздо более обширным классом других проблем; если бы благодаря этим блужданиям я узрел одновременно сходства и различия, словом, если бы они обнаружили передо мной возможность некоторого обобщения. Я приобрел бы тогда не новый факт, а новую силу. Простым примером, который раньше других приходит на ум, является алгебраическая формула, которая дает нам решение всех численных задач определенного типа, так что достаточно лишь заменить буквы числами. Благодаря такой формуле алгебраическое вычисление, однажды выполненное, избавляет нас от необходимости повторять без конца все новые и новые численные выкладки. Но это уже очень грубый пример; всем известно, что существуют такие аналогии, которые невозможно выразить какой-либо формулой, а между тем они-то и являются наиболее ценными.

Новый результат мы ценим в том случае, если, связывая воедино элементы давно известные, но до тех пор рассеянные и казавшиеся чуждыми друг другу, он внезапно вводит порядок там, где до тех пор царил, по-видимому, хаос. Такой результат позволяет нам видеть одновременно каждый из этих элементов и место, занимаемое им в общем комплексе. Этот новый факт имеет цену не только сам по себе, но он – и только он один – придает сверх того значение всем старым фактам, связанным им в одно целое. Наш ум так же немощен, как и наши чувства; он растерялся бы среди сложности мира, если бы эта сложность не имела своей гармонии: подобно близорукому человеку, он видел бы одни лишь детали и должен был бы забывать каждую из них, прежде чем перейти к изучению следующей, ибо он не был бы в состоянии охватить разом всю совокупность частностей. Только те факты достойны нашего внимания, которые вводят порядок в этот хаос и делают его, таким образом, доступным нашему восприятию.

Математики приписывают большое значение изяществу своих методов и результатов, и это не просто дилетантизм. Что, в самом деле, вызывает в нас чувство изящного в каком-нибудь решении или доказательстве? Гармония отдельных частей, их симметрия, их счастливое равновесие, – одним словом, все то, что вносит туда порядок, все то, что сообщает этим частям единство, то, что позволяет нам ясно их различать и понимать целое в одно время с деталями. Но ведь именно эти же свойства сообщают решению бо́льшую продуктивность; действительно, чем яснее мы будем видеть этот комплекс в его целом, чем лучше будем уметь обозревать его одним взглядом, тем лучше мы будем различать его аналогии с другими, смежными объектами, тем скорее мы сможем рассчитывать на открытие возможных обобщений. Впечатление изящного может быть вызвано неожиданностью сближения таких вещей, которые мы не привыкли сближать; и в этом случае изящность плодотворна, ибо благодаря ей обнажаются родственные отношения, которых мы не замечали до тех пор; она плодотворна и в том случае, если она обусловливается единственно контрастом между простотой средств и сложностью проблемы; она заставляет нас в этом случае задуматься о причине такого контраста и чаще всего позволяет нам увидеть, что причина не случайна, а таится в том или ином законе, которого мы не подозревали раньше. Одним словом, чувство изящного в математике есть чувство удовлетворения, не скажу, какое именно, но обязанное какому-то взаимному приспособлению между только что найденным решением и потребностями нашего ума; в силу такого именно приспособления найденное решение может служить орудием в наших руках. Следовательно, такое эстетическое удовлетворение находится в связи с экономией мышления. Подобно этому, например, кариатиды Эрехтейона кажутся нам изящными по той причине, что они ловко и, так сказать, весело поддерживают громадную тяжесть и вызывают в нас чувство экономии силы.

По той же причине, когда мы с помощью довольно длинных выкладок приходим к какому-нибудь поразительному по своей простоте результату, мы до тех пор не чувствуем себя удовлетворенными, пока не покажем, что мы могли бы предвидеть если не весь результат в целом, то по крайней мере его наиболее характерные черты. Чем же это объясняется? Что мешает нам удовольствоваться вычислением, раз оно, по-видимому, дало нам все, что мы хотели знать? Объясняется это тем, что в новом аналогичном случае прежнее длинное вычисление не могло бы помочь нам; иначе обстоит дело с рассуждением, наполовину интуитивным, которое позволило бы нам предвидеть результат наперед. Несложность такого рассуждения позволяет одним взглядом охватить все его части, благодаря чему непосредственно бросается в глаза то, что следует в нем изменить для приспособления его ко всем могущим представиться проблемам того же рода. Позволяя, кроме того, предвидеть, насколько просто будет решение этих проблем, такое рассуждение показывает по крайней мере, стоит ли браться за подробное вычисление.

Только что сказанного достаточно, чтобы показать, насколько было бы тщетно пытаться заменить свободную инициативу математика каким-нибудь механическим приемом.

Для получения действительно ценного результата недостаточно нагромоздить кучу выкладок или иметь машину для приведения всего в порядок; имеет значение не порядок вообще, а порядок неожиданный. Машина может сколько угодно кромсать сырой фактический материал, но то, что мы назвали душой факта, всегда будет ускользать от нее.

Начиная с середины истекшего столетия математики все больше и больше стремятся к достижению абсолютной строгости, и в этом они вполне правы. Это стремление выступает все ярче и ярче. В математике строгость еще не составляет всего, но где ее нет, там нет ничего; нестрогое доказательство – это ничто! Думаю, что с этим никто спорить не станет. Но если толковать эту истину слишком буквально, то окажется, что, например, до 1820 г. не было вовсе математики – утверждение, несомненно, преувеличенное; математики того времени охотно подразумевали то, что мы излагаем в пространных рассуждениях. Это не значит, что они вовсе не замечали этого, но они проходили мимо слишком поспешно; а чтобы хорошо разглядеть проблему, надо было бы взять на себя труд хотя бы высказать ее.

Но есть ли необходимость каждый раз подробно останавливаться на этой точности? Те, которые первые выдвинули требование строгой точности на первый план, дали нам образцы рассуждений, которым мы можем стараться подражать; но если будущие доказательства нужно будет всегда строить по этим образцам, то математические трактаты станут чересчур уж длинными; если я боюсь слишком длинных рассуждений, то не из одного только страха перед переполнением библиотек, а главным образом потому, что наши доказательства, все более удлиняясь, потеряют ту внешнюю видимую гармонию, о полезной роли которой я только что говорил.