Этот сборник научного юмора с физико-математическим уклоном можно читать с любой страницы: приведенные в нём байки, исторические анекдоты и реальные истории связаны между собой только тематически.
1.0 — OCR, вычитка, исправление опечаток — sklart (29.08.2023).
1.01 — добавил обложку — sklart (29.08.2023).
Курьёзы и юмор с физико-математическим уклоном
Часть 1: со ссылками на источники
Аксиома Цермело (или аксиома выбора) была встречена бурной полемикой. Рассел высказывался о ней так: «Сначала она кажется очевидной; но чем больше вдумываешься, тем более странными кажутся выводы из этой аксиомы; под конец же перестаешь понимать, что же она означает». [1, стр. 6]
В 1696-м году И.Бернули и Лейбниц бросили две дьявольские загадки[1] — это был вызов математикам Европы. Задачи в течении шести месяцев не давали покоя европейским математикам, а 29 января 1696 года о них услышал Ньютон. Он пошел домой и, пообедав, решил эти задачи, а на следующий день анонимно передал решение в Королевское общество. Анонимность сохранить не удалось — увидев решение, Бернулли воскликнул: «Tanquam ex ungue leonem!» («Льва узнают по когтям!») [1, стр. 14] [3, стр. 99].
Максвелл обозначал векторы готическими буквами, и Хэвисайд сетовал на этот «несчастливый выбор», так как «одного этого достаточно, чтобы вызвать предубеждение читателя против векторного анализа». [1, стр. 16]
В период с 1823 по 1826 г. Лобачевский создал свою неевклидову геометрию, а в 1829 г. опубликовал «Рассуждение о принципах геометрии». Началась травля. В 1841 г. с его книгой «Геометрические исследования по теории параллельных линий» (изданной на немецком языке) познакомился Гаусс и высоко оценил ее… в дружеской переписке.
Признание пришло только в 1868 г. — «Чем Коперник был для Птолемея, тем был Лобачевский для Евклида…» (известные слова Клиффорда). [1, стр. 23–24]
Как заметили Вавилонские жрецы, солнечный диск укладывается по дневному пути Солнца 180 раз — «Солнце делает 180 шагов». Тогда путь за сутки равен «360 шагам». Латинское слово gradus как раз и означает «шаг». [1, стр. 27]
До распространения современного способа деления эта операция была трудной и громоздкой, и методов было почти столько же, сколько учителей арифметики. Современный способ описан впервые в рукописи неизвестного автора (1460). Последний учебник, в котором деление излагается «не по-нашему», вышел в 1800 г. [1, стр. 29]
Неразрешимость задачи о квадратуре круга[2] обусловлена трансцендентностью числа
Однако попытки многочисленных любителей квадрировать круг не прекращаются[3]. Французский астроном Араго писал по этому поводу: «Академии всех стран, борясь против искателей квадратуры, заметили, что болезнь эта обычно усиливается к весне». [26, стр. 205–206]
Приведем также цитату из книги [5]: «…на свете было, есть и будет несметное число всяких бездельников, которые отравляют жизнь настоящим ученым, заваливая их своими творениями по вопросу о квадратуре круга и доказательствами теоремы Ферма и требуя не только внимания и помощи, но и тысячных премий, и поднимают дикие вопли о бесчеловечности, когда их просят по-хорошему не приставать с чепухой и отвязаться». [5, стр. 96]