АКСИОМА КАНТОРА (об однозначном соответствии между действительными числами и точками прямой) использовалась в математике с незапамятных времен. Однако, точно сформулировал эту аксиому именно Г.Кантор. [1, стр. 5]
АКСИОМА ПАША. Самое первое замечание о том, что понятие «между» нуждается в строгой формулировке, принадлежит Гауссу[4]. [1, стр. 5]
АКСИОМА ЦЕРМЕЛО (аксиома выбора). Необходимость такого рода аксиомы отметил Б.Леви (1902). Цермело (по совету Шмидта) сформулировал аксиому в явном виде (1904) и включил ее в систему аксиом теории множеств. [1, стр. 6]
АРАБСКИЕ ЦИФРЫ придумали не арабы. Арабы лишь переняли эту форму записи чисел из Индии [29, стр. 42]
БИНОМ НЬЮТОНА. Частные случаи этой знаменитой формулы были известны задолго до Ньютона в Древнем Востоке. Вероятно также, что Омар Хайям вывел ее для натурального показателя[5]. [1, стр. 14] [32, стр. 35]
ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ НЬЮТОНА-ЛЕЙБНИЦА. Ферма уяснил и применил ведущую идею этого исчисления на 13 лет раньше рождения Ньютона и на 17 лет ранее рождения Лейбница[6][7]. [3, стр. 56]
КРИВАЯ ВИВИАНИ. Название объясняется тем, что Вивиани нашел на поверхности сферы квадрируемую часть — задача приводила к этой кривой. Однако еще ранее «кривую Вивиани» рассматривали Роберваль и Лалубер. [1, стр. 64]
КРИВАЯ ЖОРДАНА. Необходимость доказать то, что замкнутая кривая делит плоскость на две части, отметил К.Нейман. Подобие идей Жордана можно усмотреть в «Лекциях» Вейерштрасса и его статье 1884 года[8]. [1, стр. 64]
ПРАВИЛО ЛОПИТАЛЯ. Под впечатлением от лекций И.Бернулли Лопиталь написал курс «Анализ бесконечно малых для изучения кривых линий». Этот курс содержал и «правило Лопиталя», принадлежавшее, конечно, И.Бернулли[9][10]. [1, стр. 103]
ПРИНЦИП ДИРИХЛЕ. Аналогичные методы доказательства встречались уже у Гаусса и В.Томсона, но Риман узнал об этом методе на лекциях Дирихле и назвал его так, не заботясь об исторической истине. [1, стр. 106]
РЕЗОЛЬВЕНТА ГАЛУА. Абель впервые ввел выражение, называемое теперь «резольвентой Галуа». И сам Галуа приписывал идею резольвенты Абелю. Название введено Бетти, который был первым комментатором знаменитой статьи Галуа. [1, стр. 119]
РЯД МАКЛОРЕНА встречается впервые у Стирлинга, а затем опубликован Маклореном с указанием, что это частный случай разложения Тейлора. [1, стр. 122]
РЯДЫ ФУРЬЕ. Название «ряды Фурье», предложенное Риманом, стало общепринятым как знак признания трудов великого математика, хотя «ряды Фурье» и были довольно хорошо известны ко времени Фурье. [1, стр. 124]
СУММЫ ДАРБУ. В 1875 г. несколько математиков в Англии, Франции, Германии и Италии приходят к одинаковой новой формулировке условия интегрируемости функции. Дарбу, Томе, Смит, Асколи и Дюбуа Раймон с разной степенью подробности и точности ввели верхние и нижние интегральные суммы (а также верхний и нижний интегралы). Термин «суммы Дарбу» ввел, по-видимому, Жордан[11]. [1, стр. 134–135]
ТЕОРЕМА ПИФАГОРА была опубликована за две тысячи лет до него в Вавилоне, клинописью, а пифагоровы числа следовало бы называть вавилонскими числами — вавилоняне знали их раньше греков. [2, стр. 9] [5, стр. 76] [12, стр. 246] Некоторые историки также полагают, что теорема Пифагора принадлежит не легендарному Пифагору, а другому человеку с тем же именем. [14, стр. 124]
ТЕОРЕМА РОЛЛЯ также Роллю не принадлежит — Ролль, современник Ньютона и Лейбница, считал дифференциальное исчисление логически противоречивым и поэтому понятно, не мог высказать «теорему Ролля». [39, стр. 232]
ТРЕУГОЛЬНИК ПАСКАЛЯ, позволяющий находить биномиальные коэффициенты, был известен еще до Паскаля — он обычно называется так ввиду искусного его применения Паскалем к вычислению вероятностей (1653). Таблица биномиальных коэффициентов встречается значительно раньше, например в трактате китайского математика Чжу Ши-чжи (1303). [3, стр. 79] [5, стр. 125] [39, стр. 47]
ФОРМУЛА ГЕРОНА. Архимед еще до Герона знал формулу, по которой вычисляется площадь треугольника по трем сторонам. [32, стр. 23]
ФОРМУЛА МУАВРА (cos
ФОРМУЛА ЭЙЛЕРА. Соотношение