Перейдем к другому примеру – к распределению малых планет по зодиаку. Их начальные долготы могли быть какие угодно, но их средние движения были различны, и они двигались уже так долго, что в настоящее время можно спокойно сказать, что они распределены вдоль зодиака совершенно случайно. Незначительные разности в их начальных расстояниях от Солнца и, что сводится к тому же, в их среднем движении в конце концов дали огромное различие в долготах, которые они теперь имеют. В самом деле, разница в одну тысячную долю секунды их суточного пути дает уже секунду за три года, градус – приблизительно за 10 000 лет и целую окружность – за три-четыре миллиона лет; но что это составляет по сравнению со временем, которое протекло с тех пор, как малые планеты отделились от туманности Лапласа! Перед нами опять ничтожная причина и большой эффект или, иначе, небольшие разности в причине и большие – в действии.
Игра в рулетку отличается от этого примера меньше, чем это может казаться на первый взгляд. Представим себе иглу, которая вращается на шпиле в центре циферблата, разделенного на сто секторов, попеременно красных и черных. Если игла останавливается на красном секторе, то игра выиграна, в противном случае – проиграна. Все, очевидно, зависит от толчка, который мы первоначально сообщаем игле. Игла сделает, скажем, 10 или 20 оборотов, но остановится она раньше или позже, смотря по тому, толкнул ли я ее сильнее или слабее. Однако достаточно, чтобы толчок изменился на тысячную или на две тысячных доли, и игла остановится на черном или соответственно на следующем красном секторе. Это – различия, которые не могут быть восприняты мускульным чувством, которые ускользают даже и от более тонких инструментов. Я лишен, следовательно, возможности предвидеть, что произойдет с иглой, которую я только что толкнул, а потому мое сердце бьется, и я с нетерпением ожидаю, что мне даст случай. Разность в причине совершенно неощутима, разность в результате имеет для меня чрезвычайно большую важность, потому что речь идет о всей моей ставке.
Позвольте мне теперь сделать отступление, несколько странное для моей темы. Один философ несколько лет тому назад сказал, что будущее определено прошлым, но что прошлое не определено будущим. Иными словами: зная настоящее, мы могли бы сделать заключение относительно будущего, но не относительно прошлого, ибо, сказал бы он, определенная причина всегда должна привести к одному результату, но один и тот же результат может быть вызван множеством различных причин. Ясно, что ни один ученый не подпишется под этим выводом. Законы природы связывают предшествующее с последующим таким образом, что предшествующее определено последующим так же, как последующее предшествующим. Но в чем же может заключаться источник ошибки, допущенной этим философом? Как известно, в силу принципа Карно физические явления необратимы, и мир стремится к полному однообразию. Когда два тела различной температуры находятся в соприкосновении, то более теплое уступает тепло холодному; мы можем, таким образом, предвидеть, что температура сравняется. Но когда температура уже сравняется, и нас спросят о том, что было раньше, что сможем мы ответить? Мы скажем, конечно, что одно тело было более нагрето, а другое менее, но мы не сумеем угадать, какое из них было прежде более теплым.
Между тем в действительности температуры никогда не сделаются совершенно равными. Разность температур стремится к нулю лишь асимптотически, и наступает момент, когда наши термометры уже неспособны ее распознать. Но если бы мы имели термометры в тысячу раз, в сто тысяч раз более чувствительные, то мы убедились бы, что есть еще небольшая разница и что одно из двух тел осталось более теплым, чем другое, и тогда мы могли бы утверждать, что именно это тело было некогда более теплым.
Мы видим здесь, в противоположность предыдущим примерам, большие различия в причинах и ничтожные – в результатах. Фламмарион придумал как-то наблюдателя, который удаляется от Земли со скоростью большей, чем скорость света. Для него время изменило бы знак, история потекла бы вспять, и Ватерлоо предшествовало бы Аустерлицу. Ясно, что для такого рода наблюдателя результаты и причины заменили бы друг друга, неустойчивое равновесие не было бы исключением, вследствие общей необратимости явлений ему казалось бы, что все исходит из какого-то хаоса в неустойчивом равновесии. Вся природа казалась бы ему предоставленной случаю.
Мы обратимся теперь к другим примерам, в которых мы увидим совершенно другие свойства. Начнем с кинетической теории газов. Как должны мы представлять себе сосуд, наполненный газом? Бесчисленные молекулы, несущиеся с большими скоростями, бороздят сосуд во всех направлениях. В любой момент они ударяются о стенки и друг о друга, и эти столкновения происходят в самых разнообразных условиях. Здесь нас больше всего поражает не столько малость причин, сколько их сложность. И все-таки первоначальный элемент находится здесь и играет важную роль. Если бы молекула уклонилась налево или направо от своей траектории на очень малую величину, сравнимую с радиусом действия молекул газа, то она избежала бы толчка или таковой произошел бы при совершенно иных условиях, а это могло бы изменить на 90° или 180° направление скорости после толчка. И это еще не все. Как мы видели, достаточно отклонить молекулу до толчка на бесконечно малое расстояние, чтобы она после толчка отклонилась на конечное расстояние. Поэтому, если бы молекула подверглась двум последовательным столкновениям, то ей достаточно было бы сообщить до первого толчка бесконечно малое уклонение второго порядка, чтобы мы получили после первого столкновения бесконечно малое уклонение первого порядка, а после второго – конечное. Между тем молекула испытывает не только два столкновения, а весьма большое число их в секунду. Поэтому, если первый толчок умножает отклонение на весьма большое число
Обратимся теперь к другому примеру. Почему нам кажется во время ливня, что капли дождя распределены совершенно случайно? Это опять-таки происходит оттого, что причины, которыми обусловливается их образование, очень сложны. Ионы были распространены в атмосфере задолго до ливня, задолго до него они были подвержены постоянно меняющимся токам воздуха, они были увлечены в вихри весьма малых размеров, так что окончательное распределение их не находилось уже ни в каком соответствии с начальным. Затем температура внезапно понижается, туман сгущается, и каждый из этих ионов становится центром капли дождя. Чтобы установить, каково будет распределение капель и сколько их упадет на каждый камень мостовой, недостаточно было бы узнать начальное положение ионов.
Необходимо было бы учесть действие тысячи слабых и прихотливых воздушных течений.
Совершенно то же имеет место, когда пылинки взвешены в воде. Сосуд изборожден токами, законы которых нам неизвестны. Мы знаем только, что они очень сложны; по истечении некоторого времени пылинки будут распределены случайно, т. е. равномерно по всему сосуду: и это обусловливается именно сложностью потоков. Если бы они подчинялись простому закону, если бы, например, сосуд был круглый и токи описывали круги вокруг оси сосуда, то дело обстояло бы иначе, ибо каждая пылинка оставалась бы на той же высоте и на том же расстоянии от оси.
Мы пришли бы к тому же результату, если бы мы рассматривали смесь двух жидкостей или смесь двух мелко истолченных порошков. Чтобы привести еще грубый пример, скажем, что приблизительно то же самое происходит, когда мы тасуем игральные карты. При каждой перетасовке карты подвергаются перемещению (аналогичному тому, которое мы изучаем в теории перестановок). Какое же расположение карт получится в результате? Вероятность того, что получится некоторое определенное расположение (например, то, при котором на
Еще два слова о теории ошибок. Здесь причины особенно сложны и особенно многообразны. Сколько ловушек должен избежать наблюдатель, располагая даже лучшими инструментами. Он должен приучить себя замечать наиболее опасные и избегать их. Их называют систематическими ошибками. Но даже когда он их устранил, – допуская, что это ему удалось, – остается много мелких ошибок, которые, накапливаясь, могут оказаться опасными. Таким образом, возникают случайные ошибки; мы приписываем их случаю, потому что причины их слишком сложны и многочисленны; и здесь мы имеем только мелкие причины, каждая из которых производит незначительный эффект, но вследствие их взаимодействия и вследствие значительного их числа результаты становятся серьезными.
Можно стать еще на третью точку зрения, которая имеет меньшее значение, чем предыдущие, и на которой я буду менее настаивать. Когда хотят предсказать какой-либо факт и исследуют подготавливающие его обстоятельства, стараются получить сведения о предшествующем состоянии. Но этого ведь нельзя сделать по отношению ко всей Вселенной. Мы ограничиваемся поэтому местами, соседними с пунктом, где наше явление должно произойти, и тем, что, по-видимому, имеет связь с этим явлением. Выяснение обстоятельств не может быть полным, и нужно уметь сделать выбор. Но при таких условиях легко может случиться, что мы оставили в стороне такого рода факты, которые на первый взгляд казались совершенно чуждыми предусматриваемому явлению, которым нам даже в голову не приходило приписать какое-либо влияние на это явление и которые тем не менее, помимо нашего предвидения, играют здесь важную роль.
Человек проходит по улице, отправляясь по своим делам. Лицо, которое было бы в курсе этих дел, могло бы сказать, почему он прошел в таком-то часу по такой-то улице. На крыше работает кровельщик; подрядчик, который его нанял, вероятно, в известной мере мог бы предвидеть, что он там делает. Но прохожий, о котором была речь выше, не думает вовсе о кровельщике, как и кровельщик не думает о прохожем. Они принадлежат точно двум совершенно отдельным мирам; и тем не менее кровельщик уронил черепицу, которая убила прохожего. Мы, не колеблясь, скажем, что это дело случая.
Наши слабые силы не дают нам возможности охватить всей Вселенной, и это заставляет нас разрезать ее на слои. Мы стараемся выполнить это наименее искусственно, и тем не менее иногда оказывается, что два различных слоя влияют один на другой. Результаты такого взаимодействия мы склонны приписывать случаю.
Есть ли это особая третья точка зрения на случайность? Не всегда; в большей части случаев мы здесь возвращаемся к первой или ко второй точке зрения. Если два мира, вообще совершенно отличные один от другого, оказывают иногда друг на друга влияние, то законы этого взаимодействия неизбежно должны быть весьма сложны; а с другой стороны, достаточно весьма слабого изменения в начальных условиях, и взаимодействие между этими двумя мирами не имело бы места. Как мало было бы нужно, чтобы прохожий прошел на одну секунду раньше или чтобы кровельщик уронил свою черепицу на одну секунду позже.
Все изложенное до сих пор еще не объясняет, почему случай повинуется законам. Достаточно ли, чтобы причины были незначительны или чтобы они были сложны, для того чтобы мы могли уже предвидеть если не результаты каждого случая, то по крайней мере средние результаты. Чтобы ответить на этот вопрос, лучше всего обратиться к одному из приведенных уже выше примеров.
Я начну с рулетки. Я сказал, что точка, на которой остановится игла, будет зависеть от начального толчка, который ей дан. Какова вероятность того, что этот толчок будет иметь ту или другую величину? Я об этом ничего не знаю, но мне трудно не допустить, что эта вероятность выражается непрерывной аналитической функцией. Тогда вероятность того, что толчок содержится между
Но, как мы предположили, весьма малого изменения силы толчка будет достаточно для изменения цвета сектора, перед которым в конце концов остановится игла. При интервале от
Данной в этой задаче является аналитическая функция, которая выражает вероятность определенного начального толчка. Но теорема остается справедливой, каково бы ни было это данное, так как она зависит от свойства, общего всем аналитическим функциям. Отсюда следует, что в конечном результате данное нам вовсе не нужно.
То, что мы сказали о рулетке, применяется также к примеру малых планет. Мы можем смотреть на зодиак как на громадную рулетку, по которой Творец разбросал большое число шариков, сообщив им различные начальные скорости, меняющиеся согласно закону, вообще говоря, произвольному. В настоящее время они распределены равномерно, независимо от этого закона, по той же причине, что и в предыдущем случае. Мы видим также, почему явления повинуются законам случая, когда незначительные разницы в причинах способны вызвать большие различия в результатах. Вероятности этих малых разностей мы можем в этом случае считать пропорциональными самим разностям именно потому, что эти разности очень малы, и незначительные приращения непрерывной функции пропорциональны приращениям переменной.