Теорема века. Мир с точки зрения математики

22
18
20
22
24
26
28
30

Например, в один момент α присутствие предмета А обнаруживается мною органом зрения. В другой момент β присутствие другого предмета В обнаруживается мною при помощи другого органа чувств, например слуха или осязания. Я заключаю, что предмет В занимает то же место, что и предмет А. Что же это значит? Прежде всего, это не значит, что оба предмета занимают в два различных момента одну и ту же точку в абсолютном пространстве; такое пространство, если бы и существовало, ускользало бы от нашего сознания, ибо между моментами α и β Солнечная система переместилась, а мы этого перемещения не знаем. Это значит только, что оба предмета занимают одно и то же положение по отношению к нашему телу.

Но какое же содержание имеет это утверждение? Впечатления, которые мы получили от этих предметов, шли по совершенно различным путям: по зрительному нерву для предмета А, по слуховому нерву для предмета В. С точки зрения качественной эти впечатления не имеют ничего общего. Представления, которые мы можем себе составить об этих двух предметах, являются абсолютно разнородными, друг к другу не сводимыми. Но я знаю только, что мне стоит известным образом протянуть правую руку, и я ухвачу тело А; если даже я воздерживаюсь от соответствующего движения, то я представляю себе мускульные ощущения и другие аналогичные ощущения, которыми сопровождается это движение. Такое представление и ассоциируется с представлением предмета А.

Я знаю, однако, что могу достать тело В, протягивая тем же самым образом правую руку, причем это движение сопровождается таким же рядом мускульных ощущений. И только это я и разумею, когда утверждаю, что оба предмета занимают одно и то же положение.

Я знаю также, что мог бы достать предмет А при помощи другого подходящего движения левой руки, и я представляю себе те мускульные ощущения, которыми сопровождалось бы это движение; и при помощи того же движения левой руки, влекущего за собою те же ощущения, я мог бы достать предмет В.

Это очень важно, потому что именно этим путем я могу защитить себя против опасностей, которыми мне могут угрожать предметы А и В. Каждому удару, который может быть нам нанесен извне, природа противопоставила один или несколько ответных ударов, которые имеют для нас предохранительное значение. Одним и тем же парированием можно отвечать на несколько ударов; например, одним и тем же движением правой руки можно будет защитить себя в момент α против предмета A и в момент β против предмета В. Точно так же один и тот же удар может быть отражен несколькими приемами, и, например, как мы уже указали, предмет А можно достать при помощи известного движения либо правой, либо левой руки.

Все эти ответные удары не имеют между собою ничего общего, кроме того, разве, что они дают возможность избежать одного и того же удара, и только об этом-то идет речь, когда мы говорим о них как о движениях, заканчивающихся в одной и той же точке пространства. Равным образом то общее, которое заключается в предметах, когда мы говорим, что они занимают одно и то же место пространства, выражается лишь в том, что для защиты от них может быть употреблен один и тот же ответный удар.

Другими словами, представим себе сеть бесчисленных телеграфных проволок, из которых одни имеют центробежное, другие центростремительное направление. Центростремительные проволоки предупреждают нас о бедах, совершившихся во внешнем мире, центробежные должны принести помощь. Соединения установлены таким образом, что когда по одной из центростремительных проволок пробегает ток, он действует на электрический прибор, реле, и вызывает ток в одной из центробежных проволок. При этом несколько центростремительных проволок могут действовать на одну и ту же центробежную, если один и тот же вид помощи применим в разных несчастных случаях, и одна центростремительная проволока может поколебать разные центробежные проволоки либо одновременно, либо в каком-нибудь последовательном порядке, если одно и то же бедствие может быть исправлено несколькими средствами.

Вот эта-то сложная система связей, этот, если можно так сказать, распределительный щит и есть вся наша геометрия или, иначе говоря, все то истинктивное, что заключается в нашей геометрии. То, что мы называем интуицией прямой линии или расстояния, и есть реализация в нашем сознании этих связей и их управляющего характера.

Легко понять, откуда вытекает этот управляющий характер. Связь нам кажется тем более неразрушимой, чем древнее ее происхождение. Но эти связи в большинстве случаев не являются приобретениями индивидуума, ибо в зачаточном состоянии они заметны уже у новорожденного. Эти связи – приобретения расовые. Естественный отбор должен был упрочить их тем скорее, чем они более необходимы.

В числе последних на первом месте должны были быть, конечно, те приобретения, о которых мы говорили, потому что без них защита организма была бы невозможна. Как только клетки вышли из стадии простого наложения и стали вступать в стадию взаимного служения друг другу, должен был создаться механизм, аналогичный тому, который мы выше описали, для того чтобы это служение не уклонялось от должного пути и направлялось против опасности.

Если пустим каплю кислоты на кожу обезглавленной лягушки, то последняя старается снять эту каплю лапой, ближайшей к тому месту, где упала капля; а если эта лапа ампутирована, то лягушка пользуется другой лапой. Вот пример того дублирования ответного удара, о котором я только что говорил и которое позволяет бороться с бедствием вторым средством, если первое вышло из строя. Именно эта множественность ответных ударов и координация, которая из нее вытекает, образуют в своей совокупности пространство.

Мы видим, в какие глубины бессознательного надобно спуститься, чтобы найти первые следы пространственных связей, ибо в них играют роль простейшие и низшие части нервной системы. Можно ли после этого удивляться сопротивлению, которое мы оказываем каждой попытке разъединить то, что уже так давно соединено? Но это сопротивление и есть то, что мы называем очевидностью геометрических истин, эта очевидность есть не что иное, как то тягостное чувство противления, которое мы обыкновенно испытываем, когда отказываемся от очень старых привычек, с коими нам всегда легко жилось.

III

Созданное таким образом пространство имеет малые размеры: оно не простирается дальше того места, которое достигается моей рукой. Границы пространства расширяются благодаря вмешательству памяти. Имеются такие точки, которые навсегда останутся для меня недостижимыми, какие бы усилия я ни употреблял, протягивая руку. Если бы я был прикреплен к почве наподобие, например, гидроидного полипа, который может протягивать свои щупальца, то все эти точки оставались бы вне пространства, потому что те ощущения, которые мы можем испытывать благодаря действию тел, помещенных в этих точках, не были бы ассоциированы ни с какой-либо идеей движения, необходимого для достижения этих тел, ни с каким-либо соответствующим ответным ударом. Нам казалось бы, что эти ощущения не имеют пространственного характера, и мы не старались бы их локализовать.

Но, в отличие от низших животных, мы не прикреплены к почве. Если враг находится далеко от нас, то мы можем до него дойти и, приблизившись, протянуть руку. Это тоже ответный удар, но дальнего действия. Кроме того, это сложный ответный удар, и в представление, которое мы о нем себе составляем, входит представление о мускульных ощущениях, вызванных движением ног, представление о мускульных ощущениях, вызванных конечным движением руки, представление об ощущениях полукружных каналов м т. д. Мы должны, кроме того, представить себе не комплекс одновременных ощущений, а комплекс ощущений последовательных, сменяющих друг друга в определенном порядке, и вот почему я указал выше на необходимость вмешательства памяти.

Заметим еще, что для того, чтобы прийти к одной и той же точке, я могу очень близко подойти к цели, которую мне нужно достигнуть, и лишь немного вытянуть руку. Что же еще мне известно? Не один, а тысячу ответных ударов могу я противопоставить одной и той же опасности. Все эти удары образованы из ощущений, которые могут не иметь между собой ничего общего, но мы их рассматриваем как определяющие одну и ту же точку пространства, потому что они могут отвечать одной и той же опасности и все ассоциированы с понятием об этой опасности. Возможность парировать один и тот же удар и сообщает этим различным ответным ударам единство, подобно тому как возможность быть парированным одним и тем же способом сообщает единство различного рода ударам, которые могут угрожать нам из одной и той же точки пространства. Именно это двоякое единство и создает индивидуальность каждой точки пространства, а понятие о точке ничего, кроме этого, в себе не заключает.

Пространство, которое я рассматривал в предыдущем разделе и которое я мог бы назвать ограниченным пространством, было отнесено к осям координат, связанным с моим телом; эти оси были постоянны, так как мое тело не двигалось, а перемещались лишь мои члены. Каковы же оси, к которым может быть отнесено расширенное пространство, т. е. то пространство, которое я только что определил? Мы определяем точку при помощи ряда движений, которые необходимо совершать для ее достижения, исходя при этом из определенного начального положения тела. Оси, следовательно, связаны с этим начальным положением.

Но положение, которое я называю начальным, может быть произвольно избрано среди всех тех положений, которые мое тело последовательно занимало; если более или менее бессознательное воспоминание об этих последовательных положениях необходимо для генезиса понятия пространства, то это воспоминание может простираться более или менее далеко в прошлое. Отсюда получается известная неопределенность в самом определении пространства, и этой именно неопределенностью обусловливается его относительность.

Итак, нет абсолютного пространства, а есть только пространство, отнесенное к известному начальному положению тела. Для сознательного существа, которое, как низшие животные, было бы прикреплено к почве и которому, следовательно, было бы знакомо лишь ограниченное пространство, это пространство также было бы относительным, так как оно было бы отнесено к его телу; но такое существо не сознавало бы этой относительности, потому что оси, к которым оно относило ограниченное пространство, не изменялись бы! Конечно, скала, к которой это существо было бы приковано, не оставалась бы неподвижной, так как она увлекалась бы движением нашей планеты; для нас, следовательно, эти оси изменялись бы в каждое мгновение; но для него они оставались бы неизменными. Мы обладаем способностью относить наше расширенное пространство то к положению А нашего тела, рассматриваемому как начальное, то к положению В, которое наше тело приобрело несколькими мгновениями позже и которое совершенно свободно можем также рассматривать как начальное; мы, следовательно, каждое мгновение производим бессознательное изменение координат. Этой способности не было бы у нашего воображаемого существа; лишенное возможности путешествовать, оно почитало бы пространство абсолютным. В каждое мгновение его система в действительности изменялась бы, но для него она оставалась бы одной и той же, так как она была бы единственной его системой. Не то для нас, обладающих в каждое мгновение несколькими системами, между которыми мы можем произвольно выбирать, и сохраняющих воспоминания, которые могут нас переносить в более или менее далекое прошлое.

Но это не все. Ограниченное пространство не было бы однородным; различные точки этого пространства не могли бы рассматриваться как эквивалентные, потому что для достижения одних потребовались бы величайшие усилия, для достижения других – незначительные. Напротив, наше беспредельное пространство кажется нам однородным, и мы говорим, что все его точки эквивалентны. Что же это, собственно, значит?

Если мы исходим из известного положения A, то мы можем совершить известные движения M, характеризуемые известным комплексом мускульных ощущений. Но, исходя из другого положения В, мы сможем совершить движения М’, характеризуемые теми же мускульными ощущениями. Обозначим буквой а положение определенной точки тела, например конца указательного пальца правой руки при начальном положении A, и обозначим буквой В положение того же пальца после того, как, исходя из этого положения A, мы совершили движения М. Пусть а’ будет положение того же пальца в В, а b’ – положение того же пальца после совершения движений М’.