Если теперь рассматривать конвекционный ток как совершенно аналогичный току проводимости, то контур
Пример подобного процесса может быть осуществлен, если соединить проволокой два полюса машины Гольца: вращающийся заряженный круг переносит электричество путем конвекции от одного полюса к другому; затем оно по проволоке возвращается к первому полюсу, осуществляя ток проводимости. Но получение подобных токов сколько-нибудь значительной силы является делом весьма трудным; при тех средствах, какими располагал Ампер, это было прямо невозможно. Одним словом, Ампер мог составить себе идею о двух типах незамкнутых токов, но он не был в состоянии подвергнуть опытному исследованию как те, так и другие, так как или сила их была слишком ничтожна, или длительность их была слишком мала.
Итак, на опыте он мог обнаружить лишь действие замкнутого тока на другой замкнутый ток или, точнее, действие одного замкнутого тока на часть другого, так как можно пропустить ток по замкнутому контуру, состоящему из одной части подвижной и другой – неподвижной. В этом случае возникает возможность изучать перемещения подвижной части под действием другого замкнутого тока. Что касается действий незамкнутого тока как на замкнутый ток, так и на другой незамкнутый ток, то изучить их Ампер не имел никакого средства.
1.
а) Если сила токов поддерживается постоянной и если два контура, подвергавшиеся каким угодно перемещениям и деформациям, возвращаются затем к своей начальной конфигурации, то полная работа электродинамических сил будет равна нулю. Другими словами, здесь существует электродинамический потенциал двух контуров, который пропорционален произведению сил токов и зависит от формы и относительного положения контуров; работа электродинамических сил равна изменению этого потенциала.
б) Действие замкнутого соленоида равно нулю.
в) Действие контура
а) сила, с которой контур
б) магнитная стрелка весьма малых размеров стремится принять направление магнитной силы, и пара, которая стремится привести ее в это положение, пропорциональна произведению магнитной силы, магнитного момента стрелки и синуса угла отклонения;
в) если контур
2.
В другом положении, в которое подвижная проволока приходит после некоторого скольжения, конец α лежит в другой точке
Если подобный контур подвергается действию замкнутого тока
Эта гипотеза может казаться довольно естественной, и Ампер ввел ее, сам того не замечая; тем не менее она не обязательна, и, как мы увидим позднее, Гельмгольц ее отбросил. Как бы то ни было, она позволила Амперу, несмотря на то, что он никогда не мог осуществить незамкнутый ток, формулировать законы действия замкнутого тока на другой, незамкнутый, или даже на элемент тока.
Законы эти по-прежнему просты:
а) сила, действующая на элемент тока, приложена к этому элементу; она перпендикулярна к элементу и к магнитной силе и пропорциональна нормальной к элементу слагающей этой магнитной силы;
б) действие замкнутого соленоида на элемент тока равно нулю.
Но в этом случае уже не существует электродинамического потенциала; т. е. если ток замкнутый и ток незамкнутый, при условии постоянства их сил, возвращаются к начальной конфигурации, то полная работа уже не будет равна нулю.
3.
Как же это возможно? Если бы мы имели два контура неизменной формы: один неподвижный