Теорема века. Мир с точки зрения математики

22
18
20
22
24
26
28
30

Если теперь рассматривать конвекционный ток как совершенно аналогичный току проводимости, то контур BNAMB является замкнутым: если, напротив, конвекционный ток не является «настоящим током», например, если он не оказывает действия на магниты, то остается лишь ток проводимости АМВ, который будет незамкнутым.

Пример подобного процесса может быть осуществлен, если соединить проволокой два полюса машины Гольца: вращающийся заряженный круг переносит электричество путем конвекции от одного полюса к другому; затем оно по проволоке возвращается к первому полюсу, осуществляя ток проводимости. Но получение подобных токов сколько-нибудь значительной силы является делом весьма трудным; при тех средствах, какими располагал Ампер, это было прямо невозможно. Одним словом, Ампер мог составить себе идею о двух типах незамкнутых токов, но он не был в состоянии подвергнуть опытному исследованию как те, так и другие, так как или сила их была слишком ничтожна, или длительность их была слишком мала.

Итак, на опыте он мог обнаружить лишь действие замкнутого тока на другой замкнутый ток или, точнее, действие одного замкнутого тока на часть другого, так как можно пропустить ток по замкнутому контуру, состоящему из одной части подвижной и другой – неподвижной. В этом случае возникает возможность изучать перемещения подвижной части под действием другого замкнутого тока. Что касается действий незамкнутого тока как на замкнутый ток, так и на другой незамкнутый ток, то изучить их Ампер не имел никакого средства.

1. Случай замкнутых токов. В случае взаимодействия двух замкнутых токов Ампер нашел из опыта замечательно простые законы. Я бегло возобновлю в памяти читателя те из них, которые будут нам впоследствии полезны.

а) Если сила токов поддерживается постоянной и если два контура, подвергавшиеся каким угодно перемещениям и деформациям, возвращаются затем к своей начальной конфигурации, то полная работа электродинамических сил будет равна нулю. Другими словами, здесь существует электродинамический потенциал двух контуров, который пропорционален произведению сил токов и зависит от формы и относительного положения контуров; работа электродинамических сил равна изменению этого потенциала.

б) Действие замкнутого соленоида равно нулю.

в) Действие контура С на другой контур С’ определяется исключительно «магнитным полем», присущим контуру С. В самом деле, в каждой точке пространства можно определить по величине и направлению некоторую силу, так называемую магнитную силу, обладающую следующими свойствами:

а) сила, с которой контур С действует на магнитный полюс, приложена к этому полюсу; она равна магнитной силе, умноженной на магнитную массу полюса;

б) магнитная стрелка весьма малых размеров стремится принять направление магнитной силы, и пара, которая стремится привести ее в это положение, пропорциональна произведению магнитной силы, магнитного момента стрелки и синуса угла отклонения;

в) если контур С’ перемещается, то работа электродинамической силы, с которой С действует на С’, равна приращению «магнитного силового потока», пронизывающего этот контур.

2. Действие замкнутого тока на элемент тока. Не будучи в состоянии осуществить незамкнутый ток в собственном смысле слова, Ампер имел лишь одно средство изучать действие замкнутого тока на элемент тока. Оно состояло в использовании контура С’, составленного из двух частей – одной неподвижной, другой подвижной. Роль подвижной части играла, например, подвижная проволока αβ, концы которой α и β могли скользить вдоль другой проволоки, укрепленной неподвижно. В одном из положений подвижной проволоки конец α лежал на точке А неподвижной проволоки, а конец β – на точке В ее. Ток шел из α в β, или – это все равно – из А в B вдоль подвижной проволоки, а из B в А возвращался по неподвижной. Таким образом, это был замкнутый ток.

В другом положении, в которое подвижная проволока приходит после некоторого скольжения, конец α лежит в другой точке А’ неподвижной проволоки, конец β – также в другой точке В’ ее. Ток идет теперь из α в β, или – это все равно – из А в В вдоль подвижной проволоки, а затем вдоль неподвижной возвращается из В’ в В, из В в А, наконец, из А в А’. Здесь ток снова остается замкнутым.

Если подобный контур подвергается действию замкнутого тока С, то подвижная часть будет перемещаться, как если бы она находилась под действием некоторой силы. Ампер допускает, что зависящая от С воображаемая сила, которая как бы действует в этом случае на подвижную часть αβ замкнутого тока, будет совершенно такою же, как если бы по αβ проходил незамкнутый ток, выходящий из α и останавливающийся в β, вместо того чтобы совершить замкнутый путь, возвратившись из β в α по неподвижной части контура.

Эта гипотеза может казаться довольно естественной, и Ампер ввел ее, сам того не замечая; тем не менее она не обязательна, и, как мы увидим позднее, Гельмгольц ее отбросил. Как бы то ни было, она позволила Амперу, несмотря на то, что он никогда не мог осуществить незамкнутый ток, формулировать законы действия замкнутого тока на другой, незамкнутый, или даже на элемент тока.

Законы эти по-прежнему просты:

а) сила, действующая на элемент тока, приложена к этому элементу; она перпендикулярна к элементу и к магнитной силе и пропорциональна нормальной к элементу слагающей этой магнитной силы;

б) действие замкнутого соленоида на элемент тока равно нулю.

Но в этом случае уже не существует электродинамического потенциала; т. е. если ток замкнутый и ток незамкнутый, при условии постоянства их сил, возвращаются к начальной конфигурации, то полная работа уже не будет равна нулю.

3. Непрерывные вращения. В числе электродинамических опытов наиболее курьезными являются те, в которых оказалось возможным осуществить непрерывное вращение (они иногда называются униполярной индукцией). Пусть у нас имеется магнит, могущий вращаться вокруг своей оси; ток проходит сначала по неподвижной проволоке, затем вступает в магнит через один из полюсов, проходит через половину длины магнита, выходит через скользящий контакт и возвращается в неподвижную проволоку. В этом случае магнит получает непрерывное вращательное движение, никогда не достигая положения равновесия. Этот опыт был произведен Фарадеем.

Как же это возможно? Если бы мы имели два контура неизменной формы: один неподвижный С, другой С’, способный вращаться около оси, то этот последний никогда не мог бы получить непрерывное вращательное движение. В самом деле, существует электродинамический потенциал; поэтому необходимо существует положение равновесия: именно то, при котором потенциал принимает наибольшее значение.