Теорема века. Мир с точки зрения математики

22
18
20
22
24
26
28
30

Всякому понятно, что, не зная ничего о функции φ, я должен действовать так, как если бы вероятность была равна 1/2. Ясно, с другой стороны, что если, становясь на объективную точку зрения, я буду наблюдать известное число выпадений, наблюдение даст мне приблизительно столько же выпадений черного, сколько и красного. Все игроки знают этот объективный закон, но он вовлекает их в одну странную ошибку, которая им часто указывалась, но в которую они всегда впадают снова. Когда красное выпало, например, шесть раз подряд, они ставят на черное, рассчитывая на верный выигрыш; ведь очень редко бывает, говорят они, чтобы красное выпадало семь раз подряд.

В действительности вероятность выигрыша и в этом случае остается равной 1/2. Правда, наблюдение показывает, что серии из семи последовательных красных крайне редки; но серия из шести красных, за которой следует один черный, является столь же редкой. Им бросилась в глаза редкость серий из семи красных; но они не обращали внимания на редкость серий из шести красных и одного черного единственно потому, что подобные сочетания меньше поражают внимание.

V. Вероятность причин. Я перехожу к проблемам вероятности причин – проблемам, наиболее важным с точки зрения их применений в науке. Пусть, например, две звезды расположены на небесной сфере очень близко друг к другу. Не является ли эта видимая близость результатом простой случайности, и не находятся ли эти звезды – хотя они расположены почти на одном и том же луче зрения – на очень различных расстояниях от Земли, а следовательно, на значительном отдалении одна от другой? Или мы имеем здесь действительную близость? Вот это и есть проблема вероятности причин. Прежде всего я напомню, что всякий раз, обсуждая проблемы вероятности событий, которыми мы занимались до сих пор, мы всегда должны были выдвигать некоторое условное положение, более или менее оправдываемое. И если чаще всего результат был в известной мере независим от этого условного положения, то это лишь в силу известных гипотез, которые позволили нам a priori отбросить, например, разрывные функции или некоторые нелепые соглашения.

Нечто аналогичное встретим мы, занимаясь вероятностью причин. Некоторое действие может быть произведено причиной А или причиной В. Действие наблюдалось; ищется вероятность того, что оно обусловлено причиной А; это – вероятность причины a posteriori. Но я не мог бы вычислить ее, если бы некоторое более или менее оправдывающееся условное положение не позволило мне наперед знать, какова априорная вероятность того, что причина А вступит в действие; я подразумеваю здесь вероятность этого события для того, кто еще не наблюдал самого действия.

Для большей ясности я возвращусь к примеру игры в экарте, к которому я прибегал выше; мой партнер сдает карты в первый раз и открывает короля – какова вероятность, что это шулер? Обычное применение формул дает 8/9 – результат, очевидно, крайне удивительный. Если исследовать дело ближе, то вычисление оказывается выполненным так, как если бы я, еще не садясь за игорный стол, уже признал, что у меня один шанс против двух за то, что мой партнер – нечестный игрок. Такая гипотеза нелепа, ибо в этом случае я, конечно, не стал бы с ним играть; этим выясняется и нелепость заключения.

Условное положение об априорной вероятности было неоправданным; поэтому и вычисление апостериорной вероятности привело меня к недопустимому результату. Отсюда видна важность предварительного условного положения. Я прибавлю еще, что если совсем не вводить условного положения, то проблема вероятности a posteriori не имела бы никакого смысла; всегда приходится это делать либо явно, либо молчаливо.

Перейдем к примеру более научного характера. Я хочу определить некоторый экспериментальный закон; когда я буду знать его, его можно будет представить с помощью некоторой кривой; я делаю несколько отдельных наблюдений; пусть каждое из них изобразится некоторой точкой. Получив ряд различных точек, я провожу между ними кривую, стараясь возможно меньше уклоняться от них и в то же время сохранить для моей кривой правильную форму, без угловых точек, без слишком резких изгибов, без внезапного изменения радиуса кривизны. Эта кривая представит мне вероятностный закон, и я допускаю, что она не только дает мне значения функции, промежуточные между наблюдаемыми, но что и самые наблюдаемые значения она дает точнее, чем прямое наблюдение (потому-то я и проводил ее вблизи моих точек, но не через самые точки).

Такова проблема вероятности причин. Действиями здесь являются зарегистрированные мною результаты измерений; они зависят от сочетания двух причин – истинного закона явления и погрешностей наблюдения. Задача состоит в том, чтобы, зная действия, отыскать вероятность того, что явление подчиняется такому-то закону, и вероятность того, что наблюдения искажены такой-то погрешностью. Тогда наиболее вероятный закон соответствует проведенной кривой, и наиболее вероятная ошибка наблюдения представится расстоянием соответствующей точки от этой кривой.

Но проблема не имела бы никакого смысла, если бы я до всякого наблюдения не составил себе идею о вероятности a priori того или иного закона и о шансах ошибки, которую я могу совершить.

Если мои инструменты хороши (и это я знал бы до наблюдения), то я не позволю моей кривой значительно уклоняться от точек, представляющих непосредственные измерения. Если же они плохи, то я мог бы отступить от этих точек несколько больше, лишь бы получить кривую, менее извилистую, в целях упорядоченности я мог бы принести и бо́льшую жертву.

Однако почему же я стараюсь провести кривую без извилин? Потому, что закон, представляемый непрерывной функцией (или функцией, у которой производные высшего порядка малы), я уже a priori рассматриваю как более вероятный сравнительно с законом, не удовлетворяющим этому условию. Без этой уверенности рассматриваемая проблема не имела бы никакого смысла; интерполяция была бы невозможна; нельзя было бы вывести закон из конечного числа наблюдений; наука не существовала бы.

Пятьдесят лет тому назад физики рассматривали более простой закон как более вероятный, чем закон сложный, при прочих равных условиях. Они ссылались на этот принцип в защиту закона Мариотта против опытов Реньо. Теперь они отказались от этой веры; и между тем как часто они бывают вынуждены поступать так, как если бы они сохранили эту веру! Как бы то ни было, именно от этого направления осталась вера в непрерывность, и мы только что видели, что если бы эта вера в свою очередь исчезла, то экспериментальная наука стала бы невозможной.

VI. Теория погрешностей. Мы пришли, таким образом, к обсуждению теории погрешностей, которая находится в непосредственной связи с проблемой вероятности причин. И здесь мы снова констатируем следствия, – а именно, известное число расходящихся между собою наблюдений – и стараемся разгадать причины, которыми вызываются, с одной стороны, истинное значение измеряемых величин, с другой – ошибки, допущенные в каждом отдельном наблюдении. Надо было бы вычислить, какова a posteriori вероятная величина каждой ошибки и затем каково вероятное значение измеряемой величины.

Но, как я уже выяснил, нельзя было бы предпринять это вычисление, если не допустить a priori, т. е. до всякого наблюдения, некоторого закона вероятности погрешностей. Существует ли какой-либо закон погрешностей?

Закон погрешностей, принятый всеми вычислителями, есть закон Гаусса, который представляется некоторой трансцендентной кривой, известной под названием «колокола».

Но прежде всего следует напомнить классическое различие между ошибками систематическими и случайными. Если мы измеряем некоторую длину слишком длинной мерой, мы всегда получим число слишком малое, и бесполезно будет повторять измерение несколько раз; это – ошибка систематическая. Если мы измеряем точным метром, мы можем тем не менее ошибиться, но мы будем ошибаться то в ту, то в другую сторону, и когда мы возьмем среднее из большого числа измерений, ошибка будет стремиться к уменьшению. Это – ошибки случайные.

С самого начала ясно, что систематические ошибки не могут удовлетворять закону Гаусса; но удовлетворяют ли ему случайные ошибки? Были многочисленные попытки доказать это; но почти все они являются грубо ошибочными умозаключениями. Тем не менее закон Гаусса можно доказать, опираясь на следующие гипотезы: общая ошибка есть результирующая очень большого числа частных и независимых ошибок; каждая из частных ошибок очень мала и, кроме того, подчиняется закону вероятности – какому угодно, при одном непременном условии: что вероятность положительной ошибки та же, что и вероятность ошибки, равной и противоположной по знаку. Очевидно, что эти условия будут выполняться часто, хотя и не всегда, и мы можем сохранить название случайных за теми ошибками, которые им удовлетворяют.

Отсюда видно, что метод наименьших квадратов является законным не во всех случаях; вообще физики доверяют ему меньше, чем астрономы. Несомненно, это зависит от того, что астрономы, кроме систематических ошибок, с которыми они встречаются наравне с физиками, принуждены еще бороться с одной крайне важной и вполне случайной причиной ошибок: я имею в виду атмосферные колебания.

Очень любопытно послушать физика, беседующего с астрономом о методе наблюдения: физик, убежденный, что одно хорошее измерение стоит многих плохих, прежде всего со всей предосторожностью заботится о том, чтобы исключить все систематические ошибки до последней; астроном возражает ему: «но таким образом вы сможете наблюдать лишь небольшое число звезд; случайные ошибки не исчезнут».

Какой вывод следует из этого? Можно ли и впредь применять метод наименьших квадратов? Мы должны рассуждать так: мы исключили все систематические ошибки, какие только могли подозревать; мы хорошо знаем, что существуют еще и другие, но мы не можем их открыть; между тем надо сделать выбор и принять какую-то окончательную величину, которая должна быть рассматриваема как вероятная; очевидно, лучшее, что мы можем сделать для этого, – это применить метод Гаусса. Таким образом, мы применим только практическое правило, относящееся к субъективной вероятности. Больше сказать нечего.