Дельбрюк и Лурия рассуждали так: если адаптивные изменения в геноме бактерии вызывает именно воздействие фага, то происходить они могут только после встречи бактерии и фага. Значит, если размножить бактериальный штамм во многих пробирках, а потом из каждой сделать посев на среду с фагом, то в каждой чашке Петри должно вырасти примерно одинаковое число колоний устойчивых бактерий — где-то больше, где-то меньше, но порядок величины будет один: ведь все они встретились с фагом одновременно.
Если же мутации, придающие бактерии устойчивость, возникают случайно, то этот процесс никак не зависит от присутствия фага. Допустим, в одной пробирке нужная мутация произошла десять поколений назад, в другой — пять, а в третьей — только что. Все это время бактерии — в том числе и носители мутации — продолжали размножаться[85]. Тогда в посеве из первой пробирки устойчивых клеток окажется больше тысячи, из второй — 32, а из третьей — одна-единственная. Строгие расчеты показывают: если мутации происходят направленно, то дисперсия (мера отклонения от среднего) числа устойчивых клеток должна равняться их среднему числу. Если же они случайны, дисперсия будет многократно превышать среднее.
Именно так и получилось в эксперименте Дельбрюка и Лурии: в каждом конкретном опыте дисперсия в разы превышала среднюю величину. Позднее этот эксперимент был многократно повторен с разными фагами, а также антибиотиками и другими повреждающими агентами. Результаты всякий раз были однозначны: бактерии приспосабливались по Дарвину[86].
Специально для тех, кто пытался защититься от этого опыта непониманием его математической стороны, супруги Джошуа и Эстер Ледерберг спустя несколько лет показали то же самое, что называется, «на пальцах». Они высевали множество бактерий на обычной питательной среде, а затем специальной бархатной подушечкой переносили отпечаток всех колоний на среду с фагом. Если там что-то вырастало (а рано или поздно такое случалось), то можно было точно определить, из какой колонии взялись устойчивые бактерии. И всякий раз оказывалось, что вся эта исходная колония тоже устойчива к фагу — с которым никогда в жизни не сталкивалась!
Это была одна из последних битв. Считаные годы спустя ученик Дельбрюка Джеймс Уотсон и его соавтор Фрэнсис Крик предложили свою знаменитую «двойную спираль» — и ламаркизм оказался оттеснен на задворки науки, став уделом чудаков и фанатиков, вроде изобретателей вечного двигателя[87]. Три четверти века отчаянных попыток зафиксировать «очевидное» и строго доказать «общеизвестное» закончились ничем. Но как мог Вейсман быть так уверен в этом, ничего не зная даже о существовании генов? Неужели его убедили бесхвостые мыши?
На самом деле, приступая к опыту с хвостами, Вейсман уже знал ответ. Он рассуждал так: допустим, где-то в теле произошло что-то полезное — мышцы стали толще, мозг заучил новый навык или шкура повысила лохматость. Но все эти ткани умрут вместе с самим организмом. Особи следующего поколения разовьются только из половых клеток. Как же те узнáют и запомнят эти полезные изменения, произошедшие совсем не с ними? Разве сапог, оставивший след на снегу, будет меняться по мере таяния этого следа?
Сегодня мы знаем, что постулированное Вейсманом разделение проходит не между разными тканями, а внутри каждой клетки. Вейсмановские «зародышевая плазма» и «сома» — это генотип и фенотип, генетическая программа построения организма и сам построенный по ней организм. Они есть и у одноклеточных, и у безъядерных, и даже у вирусов. И для всех этих существ остается справедливой главная мысль Вейсмана: информация идет только от генов к внешним признакам, но не наоборот. Что бы ни происходило с экземплярами изданной книги, это не может повлиять на авторскую рукопись. Ее изменяет только сам автор — естественный отбор.
Казалось, вопрос был решен. Однако тень Ламарка упорно не дает покоя некоторым биологам: в последние десятилетия в научной литературе снова регулярно появляются работы, авторы которых стремятся не мытьем, так катаньем доказать факт наследования (или хоть какого-то влияния на потомство) приобретенных признаков либо хотя бы предложить теоретическую схему, позволяющую совместить этот эффект с нашими сегодняшними знаниями об устройстве живых систем.
Одним из самых известных рецидивов ламаркизма стала вышедшая в 1998 году книга австралийских иммунологов Эдварда Стила, Робина Линдли и Роберта Блэндена
Книга наделала много шума, однако довольно быстро выяснилось, что в процессе гипермутагенеза обратной транскрипции не происходит — случайные изменения вносятся не в матричные РНК, а непосредственно в ДНК, в определенные участки генов, кодирующих антитела. Не удалось найти и постулированного авторами переноса измененных мРНК из лимфоцитов в половые клетки с последующим встраиванием ДНК-копий первых в геном вторых. Да и само «наследование приобретенного иммунитета» другим исследователям обнаружить почему-то не удалось. Что же касается главного идеолога «иммунологического ламаркизма» — Эдварда Стила, то сегодня его имя можно найти среди авторов статьи, на полном серьезе утверждающей инопланетное происхождение головоногих моллюсков…
Эпигенетика и эпигонство, или Злоприобретенные признаки
Другая разновидность современного неоламаркизма связывает свои надежды с так называемым эпигенетическим наследованием. Ссылки на работы, в которых наблюдался этот эффект, можно найти у многих неоламаркистов конца ХХ века (в частности, в упомянутой выше книге Стила и его соавторов), но «звездный час» этой идеи пробил совсем недавно. Рубежом стал 2014 год: количество работ в этой области, превысив критическую массу, сокрушило теоретические табу. Если еще совсем недавно ученые, обсуждая результаты исследований в этом направлении, старались избегать слов «наследование приобретенных признаков» (по крайней мере, в профессиональных изданиях), то сейчас эти слова стали чуть ли не знаменем нового направления. Победный клич «Ламарк все-таки был прав!» пронесся не только по блогам и телеканалам, но и по страницам вполне респектабельных научных журналов. Изучение того, как воздействия, перенесенные отцами и матерями, сказываются на детях, внуках и правнуках, буквально на глазах превратилось из сомнительной маргинальной темы в одно из самых модных и респектабельных направлений исследований.
Напомним вкратце, о чем идет речь. Как мы уже знаем, наследственные признаки не только организма в целом, но и каждой его клетки определяются генами. При этом все клетки одного организма содержат одинаковый набор генов (если не считать соматических мутаций — случайных единичных ошибок, неизбежно возникающих при многократном делении клеток, перед каждым из которых нужно скопировать весь геном). Те огромные различия в строении и функциях разных клеток, которые мы наблюдаем, возникают из-за различий в
Естественно, ученые попытались выяснить механизмы, регулирующие эту активность. Таких механизмов оказалось много, они сложным образом взаимодействуют друг с другом. В частности, еще в 1970-х годах было обнаружено, что активность генов сильно зависит от навешенных на них химических меток. Например, есть ферменты, которые могут присоединять к цитозину (одному из азотистых оснований, служащих буквами генетического кода) метильную группу. Чем больше цитозинов в конкретном гене метилировано, тем ниже его активность. Впрочем, метильные метки могут быть и сняты так же, как навешены — специальными ферментами. Еще одна группа ферментов приделывает разные молекулярные добавки к гистонам — белкам, с которыми связана ДНК в ядре клетки. Эти модификации также влияют на интенсивность работы тех генов, с которыми связана данная белковая молекула. Известны и иные механизмы такого рода. Все они отличаются тем, что никак не меняют «текст» гена и химическую природу считываемого с него белка, но заметно влияют на интенсивность этого считывания — а значит, и на концентрацию данного белка в клетке, ткани или организме в целом.
Откуда фермент знает, какой участок ДНК и когда именно ему нужно метилировать или деметилировать — пока не очень понятно. Зато сравнительно недавно удалось выяснить, что некоторые из эпигенетических меток могут при удвоении ДНК воспроизводиться на дочерней цепочке. Далее, как и следовало ожидать, оказалось, что благодаря этому распределение меток, имевшее место в материнской клетке, может быть унаследовано (хотя бы отчасти) дочерними. Наконец, была открыта и возможность передачи эпигенетических особенностей потомству, появляющемуся на свет в результате полового размножения. А поскольку, как уже говорилось, эпигенетические метки подвержены внешним воздействиям (и, по идее, служат средством обратной связи, благодаря которой режим работы гена может меняться в соответствии с текущими задачами), это вполне естественно рождало надежду найти нечто, возникшее у организма в ходе его жизни и затем переданное потомству. Проще говоря — найти
Как ни странно, в этом хоре ликующих голосов практически никто не вспоминал, что сам феномен подобного наследования известен в биологии вот уже второе столетие. Еще в 1913 году известный в ту пору немецкий биолог Виктор Йоллос обнаружил, что морфологические изменения, возникающие у инфузорий-туфелек при раздражении, не исчезают при делении клетки и сохраняются, таким образом, в течение нескольких поколений (если только инфузория не переходит к половому размножению). Инфузории, конечно, объект специфический, и с точки зрения наших сегодняшних знаний об организации их генетического аппарата этот эффект кажется не столь уж удивительным[88]. Однако вскоре аналогичные явления были обнаружены и у ряда многоклеточных организмов с «нормальным» половым размножением и «правильной» генетикой. Так, например, колорадские жуки, проходившие стадию куколки при необычно высокой температуре, отличаются характерными изменениями окраски. Оказалось, что эти изменения сохраняются (постепенно слабея) у нескольких поколений их потомков, проходивших фазу куколки уже при обычных температурах.
Все это очень сильно напоминало обычные индивидуальные модификации, столь любимые биологией XIX века, — вспомним пересаженные растения Боннье, солоноводных рачков Шманкевича и прочие примеры определенной изменчивости. Однако про обычные модификации к тому времени уже было известно, что они не наследуются. Новый же тип модификаций отличался способностью передаваться (хотя и неустойчиво, с постепенным затуханием) нескольким следующим поколениям. С легкой руки Йоллоса такие изменения получили название длительных модификаций (
Длительным модификациям не повезло: их открытие пришлось на время разочарования биологов в неоламаркизме и бурного расцвета классической генетики, быстро превращавшейся в царицу биологии. В ту биологическую картину мира, которая формировалась на основе идей генетики, длительные модификации (и вообще негенетическое наследование) вписывались с большим скрипом. К тому же эффект был довольно редким и плохо воспроизводился. Но главное — у тогдашней биологии практически не было методов, позволяющих исследовать механизмы этого явления. Феномен исправно упоминался в солидных учебниках и справочной литературе (как правило, мелким шрифтом или в примечаниях), но почти не исследовался и вообще находился где-то на периферии поля зрения науки. А когда в конце ХХ века были открыты эпигенетические механизмы регуляции активности генов и возможность их наследования, о феномене длительных модификаций уже мало кто помнил: современные молодые ученые редко интересуются публикациями вековой давности, тем более такими, которые в последние десятилетия почти никто не цитировал.
Впрочем, вопрос о времени и авторстве открытия эпигенетического наследования и даже об эквивалентности йоллосовских длительных модификаций изучаемым ныне эпигенетическим феноменам — это, в конце концов, лишь вопрос истории науки. Если не придираться к деталям, то все примерно так и должно быть: сто лет назад открыли интересный феномен, никто его с тех пор не отрицал, но не хватало знаний для его объяснения, а главное — методов для изучения. Теперь такие знания и методы появились — и изучение этого класса явлений идет полным ходом. А уж что за сто лет подзабылось имя опередившего свою эпоху первооткрывателя — обидно, конечно, но понятно и простительно.
Куда больше вопросов и недоумения вызывает не историческая, а содержательная сторона дела. Если непредвзято взглянуть, с одной стороны, на фактические сведения об эпигенетическом наследовании, а с другой — на их теоретическую трактовку энтузиастами (и особенно на их предполагаемую эволюционную роль), испытываешь глубокое удивление и даже некоторую неловкость, как при наблюдении попыток запрячь в карету морского конька.