Дарвинизм в XXI веке

22
18
20
22
24
26
28
30

Конечно, если в свете этого оглянуться на историю эволюционной идеи в биологии, на язык невольно запросятся иронические комментарии. Сколько квадратных километров бумаги было исписано за последние двести лет глубокомысленными словесами о «жизненном порыве», «воле», «стремлении», «аккумуляции усилий» и всем таком прочем, что позволяет животному самому влиять на свою будущую эволюцию! Сколько блестящих умов — от Ламарка до Анри Бергсона и Бернарда Шоу — обольщались этой красивой идеей! Сколько упреков, насмешек, патетических обличений было обрушено на «догматиков» — дарвинистов, злостно игнорирующих эту великую творческую силу! И вот оказывается, что эта великая сила способна только создавать дополнительные препятствия на пути реальной эволюции. Разгребать которые приходится все тому же невозмутимому и трудолюбивому «демону Дарвина» — естественному отбору.

Но ирония — иронией, а как же все-таки понимать этот результат? Сами авторы работы предлагают простую трактовку: именно неадаптивность «первой реакции» активности того или иного гена — причина особенно быстрой эволюции ее в ближайших поколениях. Чем вреднее будет модификационное (негенетическое) изменение того или иного признака, чем сильнее оно осложнит жизнь своих обладателей — тем ценнее будет любое мутационное (генетическое) изменение, сдвигающее этот признак в обратную, полезную сторону, тем жестче будет отбор в пользу такого генетического варианта. И тем быстрее, следовательно, этот признак будет эволюционировать в ближайших поколениях. Эта мысль даже вынесена в название статьи Резника и его коллег: «Неадаптивная пластичность усиливает быструю адаптивную эволюцию экспрессии генов в природе».

Это рассуждение звучит вполне правдоподобно и к тому же косвенно подтверждается некоторыми деталями (сужением размаха колебаний уровня активности для изученных генов в «безопасных» популяциях по сравнению с «живущими в опасности»). Однако остается вопрос: почему же «быстрые» изменения активности генов столь неотвратимо неадаптивны? Даже если они никак не связаны «по смыслу» с тем, чего требуют от организма изменившиеся условия среды, — почему бы им хотя бы в половине случаев не оказаться полезными? Ну или хотя бы нейтральными? Собственно, почему эти гены вообще закономерно реагируют на данное изменение в среде, если эта реакция никак не содействует адаптации к нему?

Вспомним комментарий Владимира Фридмана (см. главу «Отбор в натуре») к более ранним опытам с гуппиными популяциями, в которых в безопасные дотоле заводи вселяли хищников (то есть делали нечто противоположное тому, чем занималась группа Резника): изменения в индивидуальном поведении рыбок и эволюционные изменения в популяции пошли в разных и до некоторой степени противоположных направлениях. Поведение рыбок (особенно самцов) изменилось в сторону большей заботы о личной безопасности в ущерб заботе о размножении. А в ряду поколений изменения шли в сторону роста «вложения» в размножение за счет уменьшения «вложений»

в собственный размер и безопасность. По сути дела Фридман на чисто фенотипическом уровне заметил тот же парадокс, который сейчас группа Резника наглядно показала на уровне генетическом и эпигенетическом. И то, что при рассмотрении одной лишь активности генов и ее изменений кажется загадочным и противоестественным, при взгляде на фенотипическое выражение приобретает вполне внятный смысл.

Получается, что мы (как и авторы статьи в Nature) не вполне правы, называя индивидуальные изменения «контрадаптивными» или «неадаптивными» на том лишь основании, что они противоречат последующим эволюционным изменениям. Возможно, что на самом деле эти сдвиги по-своему адаптивны — только это совсем другая стратегия адаптации, ставящая во главу угла другие приоритеты и потому плохо совместимая с адаптацией эволюционной.

Пояснить сказанное можно такой аналогией. Представим себе авиаконструктора, которому нужно, допустим, модернизировать истребитель. Ему приходится учитывать целый ряд противоречащих друг другу требований: машина должна летать быстрее, чем предыдущая модель (и чем самолеты противника), но при этом нельзя уменьшать ее маневренность, ослаблять вооружение, уменьшать время, которое она способна находиться в воздухе, и т. д. Чтобы улучшить одни и сохранить на прежнем уровне другие важные в бою характеристики, конструктор решает пожертвовать долговечностью машины — исходя из того, что подавляющее большинство этих самолетов все равно не доживет до опасной степени износа. Но вот истребитель спроектирован, принят на вооружение, поступил в войска и оказался там на попечении аэродромных техников. Техник не имеет возможности существенно изменить конструкцию самолета, да и вообще его задача — не обеспечить превосходство данной модели, а поддерживать в наилучшем из возможных состояний конкретную машину. Поэтому он будет стараться улучшить то, что он может улучшить, — в частности, продлить ресурс самолета, то есть сделать его более долговечным. И даже не задумается о том, что это противоречит логике изменений, внесенных конструктором, — да и всему тренду развития истребительной авиации.

Можно предположить, что если не во всех, то во многих случаях примерно так же соотносятся индивидуальные изменения с эволюционными. Механизмы индивидуальной пластичности не могут сколько-нибудь существенно изменить морфологию данной особи, не говоря уж об особенностях индивидуального развития, которое она давно прошла. Они могут изменить только ее поведение и — в тех или иных пределах — «текущую» физиологию. И меняют их так, чтобы обеспечить максимальную безопасность и благополучие данной особи. Именно под эту задачу эволюционно формировались сами эти механизмы: их наличие выгодно, если наступившие перемены окажутся краткой полосой, которую надо просто пережить любой ценой. Если же оказывается, что перемены — всерьез и надолго (хотя бы на несколько поколений), в дело вступает естественный отбор, изменившееся направление которого меняет саму «конструкцию». Но отбор работает не с индивидуальными особями, а с генами, и потому его приоритеты могут быть совсем иными.

Разумеется, это только одна из возможных гипотез. Разнонаправленность индивидуальных и эволюционных изменений может объясняться чем-нибудь совсем иным — например, ошибками компенсационных механизмов. Вспомним, что в отсутствие хищников самцу выгодно быть цветастым и уделять брачным демонстрациям как можно больше времени и сил. Но когда хищники исчезли внезапно, может резко увеличиться частота встреч с самцами-конкурентами — отчасти из-за реального роста никем не поедаемой популяции, отчасти из-за того, что все разом перестали прятаться. А частое лицезрение соперников приводит к стрессу, который угнетает и яркую окраску, и сексуальную активность. Через три-четыре поколения естественный отбор исправит эту ошибку (например, повысив порог стресс-реакции), изменения пойдут в «правильную» сторону — но это будет уже потом.

Можно, наверно, придумать и еще какие-нибудь модели. И запросто может статься, что в одних случаях верны одни объяснения, в других — другие. Пока что же нам важен сам факт разнонаправленности индивидуальных реакций особей и дальнейшей эволюции популяции. И, исходя из него, можно предположить, что даже в тех случаях, когда направление этих изменений совпадает (см. ниже) — это именно всего лишь совпадение, а не внутренняя связь. Полагать, что эпигенетические изменения (независимо от того, насколько они адаптивны) могут со временем перерасти в эволюционные — это примерно то же самое, что верить, будто полив огорода из лейки может вызвать дождь.

Здесь внимательный читатель удивится, а может, даже и возмутится: позвольте, но ведь примеры «эпигенетической наследственности», приведенные в предыдущей главке, явно неадаптивны не только с точки зрения долгосрочной (эволюционной) стратегии, но и с точки зрения отдельной особи! Какую пользу ей могут принести повышенная склонность к неврозу, сахарному диабету или никотиновой зависимости? С другой стороны — а как же знаменитые модификации, «определенная изменчивость»? Нас же в школе учили, что они обычно адаптивны! Читатель, знакомый с биологией более глубоко, вспомнит и про «генетическую ассимиляцию» и «эффект Болдуина» — ситуации, когда те или иные изменения (предположительно адаптивные) возникают сначала как чисто фенотипические варианты, а через какое-то число поколений становятся генетически предопределенной нормой. Как это совместить с закономерностью, открытой группой Резника?

Вряд ли кто-то сейчас может дать исчерпывающий и бесспорный ответ на этот вопрос — ведь «эффект Резника» обнаружен совсем недавно. Но самое простое и очевидное соображение можно прочитать в любом приличном учебнике по теории эволюции: адаптивные модификации — не первые шаги эволюции, а ее результат, сформированный ею приспособительный механизм. Помимо всего прочего это означает, что они «включаются» в ответ на что-то, с чем данный вид более-менее регулярно сталкивался в ходе своей предыдущей эволюции. Знаменитое растение стрелолист под водой выпускает лентовидные листья, а над водой (или при произрастании на суше) — стреловидные, потому что он может расти и на мелководье, и на берегу, и на тех участках, которые несколько раз за лето успеют побывать то дном, то берегом. Геном стрелолиста эволюционно «знаком» с обоими наборами условий и имеет свою программу формирования листа для каждого из них. Рачок артемия имеет разное строение своих хвостовых члеников в зависимости от того, при какой солености воды он развивался, потому что этот рачок может жить в водоемах с разной соленостью, и его геном готов к любому ее значению в довольно широких пределах. Если бы хищные рыбы в тринидадских ручьях то появлялись во множестве, то полностью исчезали (или если бы каждый малек гуппи мог со сравнимой вероятностью оказаться как в водоеме, кишащем хищниками, так и в безопасном), возможно, гуппи бы выработали механизмы, позволяющие особи при одних и тех же генах развиваться либо в форму, приспособленную к опасностям, либо в форму, выгодную при их отсутствии, — а то и переходить из одной в другую в течение жизни. Но попадание рыбок из зашуганной хищниками популяции в безопасную заводь — явление слишком редкое и нерегулярное, чтобы стать фактором отбора; вселение хищников в мирные прежде воды случается еще реже, а их полное исчезновение там, где они прежде водились в изобилии, может быть только чудом (или началом очередного эксперимента в рамках «Проекта Гуппи»). Понятно, что предыдущая эволюция не снабдила вид никакими инструкциями на случай столь нештатных ситуаций[91].

Если это так, то не удивительно, что в большинстве экспериментов по эпигенетическому наследованию наблюдаемые сдвиги оказываются явно неадаптивными. Дело в том, что факторы, вызывающие их (от постоянного обилия высококалорийной еды до воздействия никотина), — это то, с чем данный вид в своей предыдущей эволюции не сталкивался. Попытка извлечь из прежнего эволюционного опыта какой-то «план действий» на такой случай неизбежно приводит к ошибкам — как попытки программы распознавания текстов опознать символ, отсутствующий в применяемом ею алфавите. Точно так же, как эта программа обязательно поставит какой-нибудь знак вместо неизвестного ей, геном существа, столкнувшегося с «эволюционно непредвиденной» ситуацией, попытается отождествить ее с какой-то известной. В результате какие-то изменения в распределении активности разных генов произойдут (и, возможно, даже отчасти передадутся ближайшим потомкам), но практически наверняка они будут неадекватными.

Несколько отступая от темы нашей книги, можно сказать, что такой подход присущ не только генетическим и компьютерным программам, но и, например, мозгу — в том числе и человеческому. И не только наивным умам простаков, всерьез интересующихся, к какой части паровоза и как именно нужно припрягать лошадь или как вернуть в интернет скачанную и прочитанную книгу, но и изощренным умам ученых. В самом деле, разве не так отреагировала бóльшая часть научного сообщества на открытие эпигенетических эффектов и эпигенетического наследования? На совершенно новые (и в общем-то непростые для нормального человеческого воображения) явления многие исследователи смотрят сквозь «оптику» давно обветшавших теорий, пытаясь влить «вино» новых фактов в «мехи» старых понятий и концепций.

Но наш разговор все-таки не о нравах человечества в целом и мира науки в частности, а об эволюции. Мы убедились, что закономерные изменения особей в течение их индивидуальной жизни могут совпадать или не совпадать с направлением эволюции вида или популяции, но в любом случае являются результатом предшествующей эволюции, а не причиной или движущей силой дальнейшей. И что эпигенетические эффекты, как бы они ни были интересны сами по себе, не могут рассматриваться как возможная основа для ламарковской эволюции.

Итак, наследование приобретенных признаков невозможно?

И все-таки они наследуются. Но…

Параллельно с попытками найти опору для ламаркизма в иммунологии и эпигенетике продолжались и поиски «наследования по Ламарку» в микробиологии. Казалось бы, флуктуационный тест Дельбрюка и Лурии навсегда закрыл вопрос, однозначно доказав: приспособление бактерий идет путем естественного отбора. Однако и в этой области нашлись люди, не верящие в однозначные и окончательные запреты. В конце 1980-х эту роль взял на себя профессор Гарвардской медицинской школы Джон Кернс.

Объектом его экспериментов была все та же кишечная палочка. Но если Дельбрюк и Лурия травили ее смертоносными фагами, то Кернс морил голодом. Для опытов он выбрал мутантный штамм lacс поврежденным геном фермента лактазы, расщепляющего молочный сахар — лактозу. Множество бактерий этого штамма Кернс высевал на среду, единственным питательным веществом в которой была именно лактоза.

Разумеется, в каждой чашке Петри находилось несколько клеток, у которых произошла обратная мутация и ген восстановил свою активность. Они успешно росли и размножались, давая начало видимым невооруженным глазом колониям. Но в отличие от опытов Дельбрюка и Лурии основная масса высеянных бактерий не погибала: они проходили через два-три деления, а затем переставали размножаться, ограничивали до предела процессы жизнедеятельности и в таком виде ждали лучших времен.