Мы привыкли думать, что любые модификации (как и вообще любые реакции организма на внешние изменения) в той или иной степени адаптивны. Все концепции, приписывающие модификациям какое бы то ни было эволюционное значение, основаны именно на этом и подразумевают такое свойство модификаций как само собой разумеющееся. Адаптивными «по умолчанию» считаются и эпигенетические изменения, в том числе и наследуемые.
Между тем, если посмотреть на конкретные фактические результаты, служащие основой для рассуждений о «недооцененной» эволюционной роли эпигенетики, то нельзя не заметить, что их адаптивность в лучшем случае неочевидна и может быть им приписана только посредством специальных дополнительных предположений. Например, показано, что при содержании крыс в стрессовых условиях уровень кортизона (одного из гормонов, опосредующих стресс-реакцию) у них будет стабильно повышенным, и это повышение можно отследить вплоть до четвертого поколения — даже если все эти поколения, кроме первого, будут жить в комфорте. Очень интересный эффект — но можно ли считать его адаптивным? Стресс-синдром адаптивен именно как оперативная и краткосрочная реакция организма на неожиданные (и, как правило, неприятные) изменения внешних условий, хронический же стресс действует разрушительно, провоцируя развитие ряда характерных патологий. Можно, конечно, придумать теоретическую схемку, в которой «априорно» повышенный уровень стрессового гормона оказывается полезным для организма — но это нужно именно специально придумывать, а потом еще отдельно доказывать, что такая схема действительно реализуется в данном случае.
Часто же изменения, передаваемые эпигенетическим путем, выглядят явно контрадаптивными, понижающими жизнеспособность унаследовавших их потомков. Возьмем наугад несколько работ, где исследуются эффекты эпигенетического наследования (доказанные или предполагаемые) — и что мы видим? Стресс, пережитый отцом, повышает вероятность развития неврозов и депрессии у его детей. Нехватка фолиевой кислоты (витамина В9) в рационе самцов мышей повышает риск пороков развития у их потомства. Воздействие никотина на предков снижает у потомков (вплоть до правнуков) легочную функцию, увеличивает риск астмы и повышает (!) концентрацию рецепторов к никотину — то есть в случае, если потомки тоже столкнутся с никотином, им для достижения того же эффекта хватит меньших доз. Если самец крысы страдает ожирением, то у его дочерей увеличивается риск развития сахарного диабета. И так далее, и тому подобное. И где тут, спрашивается, адаптивность? Это больше похоже на передачу последующим поколениям хронической дисфункции — своего рода «грехов отцов», которые падают на их потомков, если не до седьмого, как требует Писание, то, по крайней мере, до второго-третьего колена.
Как мог возникнуть и эволюционно закрепиться столь неудобный для своих обладателей механизм наследования, каков его биологический смысл (и есть ли он у него) — вопрос отдельный и интересный. Он требует и обсуждения, и специальных исследований — и с одним таким исследованием, дающим хотя бы намек на возможную разгадку этой загадки, мы познакомимся в следующей подглавке этой главы. Но куда чаще попытки теоретического истолкования обнаруженных феноменов сворачивают в наезженную колею «наследования приобретенных признаков», «ламарковской эволюции» и тому подобных интеллектуальных шаблонов полутора-двухвековой давности. От подобных построений порой веет некоторой шизофреничностью: в гипотезах и моделях обсуждается накопление
Возможная роль эпигенетического наследования в эволюционных процессах вызывает большие сомнения и с чисто теоретической точки зрения. Напомним: все известные сегодня эпигенетические механизмы — это регуляторы интенсивности работы того или иного гена. Под действием внешних факторов эти регуляторы принимают то или иное положение, и оно в той или иной мере наследуется. При продолжении и усилении действия тех или иных факторов положение регуляторов теоретически может с каждым поколением все больше сдвигаться в определенную сторону — но только до некоторого предела. Как известно всякому, кто пользовался приемником или электромясорубкой, любой регулятор мощности ограничен двумя крайними положениями — «выкл.» и «макс.». И все, что он может делать, — это менять мощность в промежутке между этими значениями. То же самое относится и к молекулярным регуляторам.
Для индивидуального развития и повседневного функционирования организма это не так уж мало. Достаточно вспомнить, что ход едва ли не всех формообразовательных процессов в эмбриогенезе определяется не просто наличием или отсутствием того или иного сигнального вещества (морфогена), но скорее его концентрацией, часто — соотношением концентраций разных морфогенов в каждой конкретной точке зародыша. Да и в последующей жизни едва ли не все существенные характеристики индивидуума — от физических возможностей до распределения активности в течение суток, от времени взросления до склада характера — зависят именно от концентрации определенных молекул в определенных структурах, то есть от интенсивности работы соответствующих генов.
Но совершенно непонятно, как то или иное положение регуляторов может влиять на эволюционные процессы. Во-первых, любой признак, сформировавшийся в результате него, по определению лежит в пределах
Так что все рассуждения об эволюционной роли эпигенетического наследования — это, скорее всего, рассуждения о том, чего нет.
Сказанное, разумеется, не означает, что сам этот феномен не важен или неинтересен. Выше уже говорилось об интригующей загадке дезадаптивности большинства известных примеров такого наследования. Не менее странными выглядят и другие свойства этих явлений. Например, почему передаваемые таким образом особенности очень часто (хотя в разных случаях по-разному) оказываются чувствительными к полу родителя и потомка: для некоторых удается зафиксировать только передачу от отцов к сыновьям, для других — от матерей к дочерям, для третьих — от отцов к дочерям и т. д.?[90]
Но, пожалуй, самое важное — это то, что изучение эпигенетических механизмов открывает возможность продвинуться в понимании принципов управления активностью определенных генов в определенных клетках и тканях. Каким образом, через какие молекулярные события те или иные сигналы из внешней среды изменяют расстановку эпигенетических меток на определенных участках генома? Как это происходит в половых клетках, где «нужные» гены заведомо не работают? Как влияет уже имеющаяся расстановка меток на их изменение под действием внешних сигналов?
Ответов на эти вопросы пока нет. Но сегодня уже можно с удовлетворением сказать, что не все ученые оказались зачарованы призраком «эпигенетического ламаркизма». Пока одни ликуют по поводу якобы доказанной «правоты Ламарка», другие пытаются разобраться в том, как же на самом деле соотносятся изменения режима работы тех или иных генов в ходе жизни индивидуума с эволюционными процессами.
«…Что любое движенье направо начинается с левой ноги»
В сентябре 2015 года один из ведущих научных журналов мира —
Первым делом ученые взяли достаточное количество взрослых самцов из всех четырех популяций и измерили активность всех генов, работающих в клетках их мозга (это можно сделать, просто подсчитав количество одновременно присутствующих в клетках матричных РНК, снятых с каждого гена). Сравнив активность каждого отдельного гена в разных популяциях, они выявили 135 генов, активность которых в дочерних популяциях отличалась от их активности в популяции № 1. Причем активность каждого из этих генов во всех трех дочерних популяциях была смещена в одну и ту же сторону (увеличена или уменьшена) по отношению к материнской. Это позволяло предположить, что эти сдвиги отражают не случайные различия, а именно приспособление к новым условиям обитания — отсутствию хищников. Активность генов зависит как от внешних сигналов, так и от «содержания» других областей генома — регуляторных участков ДНК, генов так называемых факторов транскрипции (сигнальных белков, регулирующих интенсивность работы других генов) и т. д. — и в меру этой зависимости подлежит действию естественного отбора. Так что изменения в активности 135 генов могли быть суммой «быстрой» фенотипической (эпигенетической) реакции и генетических изменений под действием естественного отбора.
Каков же вклад каждого из этих факторов? Чтобы выяснить это, ученые взяли еще одну группу самцов из популяции № 1 и рассадили по двум аквариумам с проточной водой. В один вода поступала из другого аквариума, где жила хищная креницихла, которой ежедневно скармливали по две гуппи — так что гуппи из первого аквариума постоянно чувствовали запах хищника и «феромон тревоги», выделяемый его жертвами.
Поскольку рыбки были из популяции № 1, для них эти пугающие сигналы были привычными — в своей родной речке они тоже постоянно сталкивались с ними. Через другой аквариум текла просто чистая вода без всяких следов присутствия хищника — и это для рыбок из популяции № 1 было совершенно новой ситуацией.
Через две недели (довольно большой срок в масштабах гуппиной жизни) ученые сравнили активность уже известных им 135 генов у гуппи из двух аквариумов. Поскольку геном рыбок измениться не мог, различия в активности генов в этом эксперименте могли отражать только индивидуальную фенотипическую реакцию на изменившиеся условия.
И вот тут выяснилось самое интересное. Из 135 исследованных генов 120 (89 %) отреагировали на исчезновение хищников изменением активности в сторону,
Какое все это имеет отношение к вопросу об эволюционной роли эпигенетических эффектов? Самое прямое: изменения активности генов
Конечно, такая картина получена хотя и для очень большого числа генов, но все-таки для единственного вида и для адаптации к единственному фактору — исчезновению хищников. Но вспомним парадоксальные результаты работ по «эпигенетическому ламаркизму»: едва ли не все они обнаруживают