Воля и самоконтроль. Как гены и мозг мешают нам бороться с соблазнами

22
18
20
22
24
26
28
30

По неизвестным науке причинам в школьных учебниках в главах про влияние среды на проявления генотипа приводятся на редкость унылые сельскохозяйственные истории про надои коров и яйценоскость кур. Сведения, не несущие эмоциональной окраски, не задерживаются в памяти (эволюционный механизм здесь примерно такой: раз нечто не вызвало эмоций, значит, оно не нужно для выживания и можно не тратить ресурсы на его запоминание), поэтому не странно, что средний взрослый плохо представляет, до какой степени условия, в которых он живет, могут менять его личность. Я попробую привести более увлекательные примеры. Начну по традиции с животных, например с пчел. Это социальные существа с очень высокой степенью организации внутри колонии. Каждое насекомое в улье выполняет строго определенную функцию и не может поменять специализацию. Большинство самок – рабочие пчелы, и их жизнь тяжела и беспросветна. Они ищут нектар, строят соты, защищают гнездо от врагов и выкармливают личинок. Причем не своих, а личинок царицы – все "работницы" бесплодны. Размножается в колонии только одна особь женского пола – царица, она же матка.

При этом генетически царица и рабочие пчелы идентичны. Способность к оплодотворению у этих насекомых зависит от такого далекого от секса фактора, как еда. Если у людей больше всего детей рождается в странах, где население хронические недоедает, голодное детство у пчелы перечеркивает все шансы передать свои гены потомкам. Если личинка получает мало еды, она никогда не станет царицей. Именно поэтому "работницы" держат большинство личинок на голодном пайке – и царица пристально следит, чтобы молодняку не перепадало больше положенной скудной нормы. Достаточное количество провизии получают лишь избранные, которым в будущем предстоит стать новыми царицами35. Более того, стерилизации развивающихся самок способствует сама еда. Будущих цариц все время кормят маточным молочком – особой жидкостью, которая вырабатывается в железах пчел-кормилиц. Насекомые, обреченные стать рабочими, получают молочко только первые дни, а затем довольствуются эрзацем из перги – смеси пыльцы и меда. Долгое время ученые думали, что именно в маточном молочке содержатся вещества, направляющие "царское" развитие пчелы. Однако недавние исследования выявили, что все не так, и королевой становится особь, которая не ела перги и меда и не получала содержащиеся в них в большом количестве фенолокислоты [1]. Из-за этих соединений и общего недостатка питательных веществ половые органы будущих "работниц" остаются недоразвитыми.

Похожим способом, т. е. выкармливая плебс всякой гадостью, регулируют число рабочих и муравьи. Причем у этих насекомых ситуация еще драматичнее: рабочие особи сохраняют возможность откладывать яйца до смерти, но матка и ее дети в буквальном смысле отбирают у них необходимые для размножения ресурсы. Чтобы рабочий муравей – а генетически они все самки – мог стать плодовитым, у него (точнее, у нее) должны развиться яичники. Вещества, которые способствуют этому процессу, вырабатывают сами рабочие – но пока в муравейнике есть матка и личинки, весь "эликсир плодовитости" достается им. Если матка погибнет или вдруг отложит недостаточно яиц, немного бесценного секрета перепадет рабочим особям, они немедленно отрастят себе яичники и начнут сами производить яйца.

Но что там способность к размножению! У многих видов даже пол зависит от условий среды. Например, если вы уродились крокодилом, то в ваших интересах тщательно следить за температурой: когда крокодильи яйца оказываются на жаре выше 32 °C, из них вылупляются самки. Но стоит подержать яйца в более прохладном месте и из скорлупы появится самец. Некоторые животные могут регулировать пол при помощи температуры и во взрослом возрасте. Скажем, если вы молодая самка камбалы, но решили раздвинуть границы гендерного опыта, вам достаточно приплыть куда-нибудь, где тепло. Там вы очень быстро станете псевдосамцом и, несмотря на оскорбительное название, сможете спариваться с настоящими самками, а из отложенных ими икринок появятся вполне полноценные рыбы [2]. И если камбала может проделать такой трюк один раз в жизни, то кораллы Ctenactis echinata развлекаются сменой пола постоянно. Когда море слишком сильно прогревается, они становятся самцами, а в прохладной водичке предпочитают быть самками. В жару кораллам и так приходится бороться за выживание, а самки тратят слишком много энергии на поддержание работы половых органов.

Определенные варианты генов не только повышают риск проблем с самоконтролем, но еще и "поощряют" поведение, которое им способствует

"Но где кораллы и где люди!" – скажет искушенный читатель. Отчасти это верно: запустить столь драматические изменения у Homo sapiens какими бы то ни было внешними воздействиями невозможно. Однако недооценивать влияние среды не стоит: оно бывает по-настоящему судьбоносным. Например, сочетание определенных вариантов генов из кластера CHRNA5-CHRNA3-CHRNB4 (он кодирует разные части белка-рецептора нейромедиатора ацетилхолина – именно к этому рецептору "цепляется" никотин), "нужной" модификации гена CYP2A6 (отвечает за переработку никотина) и привычки выкуривать несколько сигарет в день в среднем на 18 % повышает вероятность развития рака легкого [3], [4]. Причем для людей с такой комбинацией признаков риск заболеть выше даже по сравнению с теми, кто курит столько же, но не несет в ДНК этих генных вариантов. Но если человек не курит, "проблемные" модификации не будут портить ему жизнь – риск рака для их носителей несущественно выше, чем в среднем по популяции. По крайней мере, убедительных данных, которые бы указывали на обратное, ученым пока найти не удалось.

Интереснее всего, что "нехорошие" варианты генов кластера CHRNA5-CHRNA3-CHRNB4 еще и повышают риск развития никотиновой зависимости. То есть человек, в ДНК которого есть один или два опасных аллеля, начав курить, например, за компанию, с высокой вероятностью втянется. Хотя именно ему вообще не следовало бы пробовать никотин: из-за неоптимальных генных вариантов сигареты для него намного опаснее, чем для других курильщиков. Такой гандикап, когда условия среды способствуют развитию опасных привычек, заложенных в генотипе, встречается очень часто. Более того, нередко у этой пагубной цепочки появляется еще одно звено: особенности поведения, склонность к которым заложена в генотипе, побуждают человека намеренно искать среду, которая укрепляет его вредные привычки. И вот человек, несущий, скажем, вариант гена триптофангидроксилазы, который не позволяет мозгу получать достаточно серотонина, отчаянно ищет, где бы ему раздобыть приятных ощущений. В своих поисках он заходит в казино, садится за "однорукого бандита", опускает в щель жетон – и вдруг получает порцию счастья. Он кидает следующий жетон – счастья нет, покупает еще десяток, отдает их "бандиту", и восьмая монета наконец приносит эмоции, которых он так жаждет. Готово: игровая зависимость сформировалась и закрепилась. Проблемные гены услужливо подсказали, где можно получить желанное "хорошо" без затраты больших усилий. А так как в обычной жизни этого "хорошо" у человека в принципе мало из-за "неудачных" аллелей, он будет снова и снова приходить к автоматам. Постепенно в голове формируется устойчивый паттерн: "однорукий бандит" равно счастье. И вот теперь отказаться от вредной привычки уже совсем сложно, почти невозможно – ведь это означает добровольно лишить себя счастья.

Такой тип взаимодействия генов и среды – когда человек активно ищет условия, в которых его генотип проявит себя во всей красе, – получил название активного. Кроме него выделяют еще реактивное и пассивное взаимодействия. Типичный пример пассивного взаимодействия: в семье несдержанных, слабовольных мужчины и женщины появляется ребенок. Мало того, что малыш получает неблагоприятные для развития силы воли гены (а может быть, и не только гены – но об этом ниже), так еще он с младенчества наблюдает за поведением родителей и воспринимает его как норму. Например, он видит, как уставшая после работы мама по вечерам открывает холодильник и наедается чем-нибудь вкусненьким, а папа проводит вечера у телевизора с пивом. Возможно, в иных условиях ребенок научился бы получать удовольствие другими способами – например, играя в футбол или читая книгу, но в такой семье шансов на формирование здоровых привычек получать "хорошо" немного.

Реактивное взаимодействие подразумевает, что среда сама подстраивается под те или иные проявления генов. Капризный малыш на любое расстройство реагирует громким плачем – скажем, потому, что ему достались плохие варианты "генов самоконтроля" и он не в состоянии сдерживаться. Если родители и бабушки с дедушками вместо того, чтобы разбираться, что произошло, отвлекать малыша и разговаривать с ним, будут утешать ребенка конфетами, рано или поздно у него сформируется пищевая зависимость. В мозгу прочно закрепится связь: эмоциональные всплески нужно купировать едой. А так как всплески эти у носителей проблемных версий бывают нередко, пирожные и шоколад (или салат с майонезом и гамбургеры – кто как любит) станут неотъемлемой – если не основной – частью ежедневного меню.

Переплетения генетических и средовых влияний порой настолько сложны, что отделить одно от другого невозможно

Сложное переплетение генетически закрепленных паттернов поведения и влияния всевозможных факторов среды в англоязычной литературе называется gene-environment interactions, или GxE. Дальше я буду использовать именно это красивое сокращение. GxE жутко усложняет работу ученых. Не будь его, все было бы просто: у вас есть ген Х, значит, разовьется состояние Y. Но так как на проявления генов влияют условия среды, врачам и генетикам приходится говорить иначе: у вас есть ген Х, значит, с вероятностью 12–36 % разовьется состояние Y. Если удается понять, какой именно фактор среды способствует проявлению генетически обусловленного состояния Y, схема еще усложняется: у вас есть ген Х, значит, если вы будете подвергаться влиянию фактора Z, состояние Y разовьется у вас с вероятностью на 16 % больше, чем если бы вы держались подальше от Z. Но очень часто на проявление признака влияет не один конкретный фактор, а несколько – и в этом случае делать утверждения вида "если у вас есть ген X, разовьется состояние Y" вообще становится невозможным. Ученые осторожно говорят о "корреляции гена X и состояния Y" или еще более туманно – об "ассоциированных рисках".

Именно поэтому страшно модные сегодня генетические тесты без консультации со специалистом для далекого от биологии и медицины человека бесполезны и даже вредны. Тесты выявляют, есть ли у пациента варианты генов, которые, согласно данным каких-нибудь относительно надежных исследований, коррелируют с повышенным риском чего-нибудь. Но нередко бывает так, что в других относительно надежных исследованиях этой корреляции обнаружено не было. Составители тестов и описаний к ним такие "несущественные" детали порой опускают. Выходит, подобные тесты – обман? И заодно обман все то, о чем было написано в предыдущей главе? Все эти варианты генов дофаминовых и серотониновых транспортеров, триптофангидроксилаз и рецепторов никак не влияют на нашу силу воли?

Если в этом месте вы собрались выбросить книгу в мусорное ведро, подождите. Я попробую оправдать генетические тесты и заодно исследователей, которые вместо того, чтобы ясно и однозначно ответить, сможете ли вы когда-нибудь похудеть, бросить курить и выучить китайский, норовят подсунуть невнятный кисель про условия и факторы. Когда две группы ученых, которые исследуют одно и то же явление, получают противоположные результаты, это не всегда означает, что какая-то из них перепутала растворы, пробирки или пациентов – или даже с горя подогнала результаты. Очень может быть, что тут вылезает то самое GxE и опасный вариант гена проявляет себя в одних условиях, но не проявляет в других. Например, в главе 4 я рассказывала про малоактивную версию гена MAOA, носители которой излишне агрессивно реагируют на все, что им не нравится, и не в состоянии сдерживать порывы дать кому-нибудь в глаз. Коротко повторю эту историю. Когда ученые обнаружили связь MAOA и агрессии, они пришли в дикий восторг. Еще бы: идея, что по одному-единственному гену можно определять людей, которые опасны для общества, не может не вдохновлять. Группы в разных странах бросились повторять опыты – и раз за разом обнаруживали, что связи между низкой активностью гена и агрессией либо вовсе нет, либо она очень зыбкая. Всеобщий энтузиазм сменился разочарованием. Казалось, что сотни тысяч долларов и человеко-часов потрачены впустую.

Но сверхтщательное изучение "гена агрессивности" принесло плоды, в чем-то даже более ценные, чем простое утверждение: если у человека есть малоактивная версия этого гена, он будет агрессивным. Исследователи собрали кучу сведений о своих испытуемых и в конце концов докопались, почему в одних работах удавалось доказать связь этого гена с агрессивностью, а в других – нет. Оказалось, что нехороший ген проявлял себя, если его у носителей было тяжелое детство. Мальчики с малоактивной версией гена MAOA, то есть моноаминоксидазы типа А, которых били и насиловали, вырастали агрессивными достоверно чаще, чем носители этой версии из нормальных семей. Но самое важное – они были более агрессивными, чем мальчики из неблагополучных семей, но с нормальной версией гена. Это – классический и к тому же относительно "чистый" случай GxE. Для большинства сложных признаков – например, пресловутого ума или, более научно, интеллектуальных способностей – отловить опасное или, наоборот, полезное сочетание какого-нибудь фактора среды и генов намного сложнее. Потому что, во-первых, мы часто не знаем всех генов, которые влияют на признак, а во-вторых, не имеем понятия, какие факторы могут изменять их проявление. Поймать черную кошку в темной комнате легче – по крайней мере, мы знаем, кого ловим, и у нас есть четко ограниченное место, по которому мы ползаем и шарим руками.

Насколько сильно проявится влияние "хороших" и "нехороших" генов, во многом определяется на ранних стадиях формирования мозга

К счастью для нас, с самоконтролем ситуация чуть лучше. Исследователи примерно, а иногда и в деталях – см. главу 4, – знают, какие шестеренки крутятся в голове, когда мы мучительно выбираем между тортом "Наполеон" и салатом. Часто они даже знают, какие гены заставляют эти шестеренки вращаться. Короче, ученые понимают, что за существо на четырех лапах с хвостом и усами они ищут. С комнатой неопределенности больше: очевидно, что кошка может прятаться в разных помещениях, и все их мы не знаем. Но в одной комнате исследователи уверены точно: эта комната – мозг, точнее, самые ранние стадии его развития. Именно тогда создается архитектура новой коры и устанавливаются магистральные связи между разными отделами. Мозг человека формируется в утробе матери лишь частично и активно "допиливается" уже после рождения. В первые пару лет жизни по всему мозгу с чудовищной скоростью возникают и исчезают новые синапсы – связи между нейронами. У малышей в единицу времени образуется вдвое больше синапсов, чем у взрослых. Чем ребенок старше, тем медленнее и неохотнее появляются новые связи, и как раз ко времени поступления в институт скорость падает до уровня взрослого человека [5]. Немалый процент новообразованных связей приходится на соединения между разными областями мозга, например между префронтальной корой и миндалиной. Чем больше таких связей, тем лучше "холодная" часть мозга будет контролировать "горячую".

Зоны мозга созревают не постепенно, а в критические периоды, когда они особенно чувствительны к сигналам извне

Ко всему прочему, мозг зреет не целиком, а частями: различные зоны "подходят" в разное время. Периоды, когда формируется та или иная область мозга, называются критическими, и именно в эти моменты растущая зона особенно чувствительна к внешним воздействиям. Насколько уязвим мозг в критические периоды, отлично продемонстрировали нейрофизиологи Дэвид Хьюбел и Торстен Визель в далеком 1959 году (осторожно, сейчас будут мучить котиков!). Техника опыта была очень проста: ученые заклеили новорожденным котятам один глаз, чтобы в него не попадал свет. Через несколько месяцев Хьюбел и Визель убрали повязку, и оказалось, что глаз ничего не видит. Специалисты изучили мозг котят и выяснили, что в участке зрительной коры, который "обслуживал" заклеенный глаз, аномально мало связей и нейронов в так называемых колонках глазодоминантности – зонах зрительной коры, которые "обслуживают" конкретный глаз. Зато в глазодоминантных колонках, отвечающих за второй глаз, связей оказалось необычайно много. Котята, подвергшиеся монокулярной депривации (так по-научному называется придуманная Хьюбелом и Визелем экзекуция), навсегда остались слепыми на один глаз, хотя физически он был не поврежден. Тот же опыт со взрослой кошкой не привел ни к каким ужасным последствиям – разве что кошка была крайне недовольна противной штуковиной на глазу [6]. За эти эксперименты Хьюбел и Визель в 1981 году получили Нобелевскую премию, а ученый мир осознал, как важны для развития мозга критические периоды.

В эти временные отрезки мозг в буквальном смысле строит разные зоны, причем руководствуется в работе как внутренними инструкциями, так и "подсказками" извне. Новорожденный мозг не знает, что ждет его снаружи и каким он должен стать, чтобы оптимально выполнять свою работу. У него есть только самые общие предписания по строительству зрительной коры или зон, отвечающих за распознание звуков. И если внешний мир не даст мозгу ориентиров, как именно выстраивать связи, они не появятся. Именно поэтому Маугли, выросший в джунглях, никогда не научится говорить, а дети, которым вовремя не удалили катаракту, навсегда останутся слепыми. Пример с катарактой взят не с потолка: еще совсем недавно врачи советовали родителям больных малышей отложить операцию до тех пор, пока организм ребенка немного окрепнет и сможет лучше перенести хирургическое вмешательство. В результате операцию организм переносил, но зрение так и не возвращалось.