Страх физики

22
18
20
22
24
26
28
30

Чем отличаются эти кони? Можем ли мы сказать, что суперконь вдвое больше обычного коня? Суперконь имеет вдвое больший диаметр, значит ли это, что он сам вдвое больше? Например, во сколько раз вес суперконя превосходит вес обычного коня? Если оба коня сделаны из одного и того же материала, то логично предположить, что их вес будет пропорционален количеству материала, пошедшему на их изготовление. А количество материала пропорционально объёму коня. Для тел сложной формы определить объём зачастую затруднительно, но для сферы это простая школьная задача. Возможно, вы ещё не забыли формулу объёма шара: V = (4π/3)r3. Но мы не знаем точного значения объёма каждого из коней, мы можем вычислить только их отношение. Объём обычно измеряется в кубических метрах, кубических сантиметрах, кубических километрах, даже в кубических футах или дюймах — для нас не так важны сами единицы измерения, как то, что они — кубические. Это означает, что объём пропорционален кубу линейного размера. Если диаметр шара увеличить в 2 раза, его объём увеличится в 2×2×2 = 8 раз. Значит, суперконь должен весить в 8 раз больше, чем обычный конь. А что, если мы захотим сшить для коня пальто? Насколько больше материала потребуется на пальто для суперконя, чем на пальто для обычного коня? Количество материала должно быть пропорционально площади поверхности коня. Если диаметр коня увеличивается в 2 раза, то площадь, измеряемая в квадратных метрах, километрах, сантиметрах, футах, дюймах, — увеличится пропорционально квадрату линейного размера, то есть в 2×2 = 4 раза.

Итак, конь, размер которого в 2 раза больше, имеет в 8 раз больший вес и в 4 раза большую площадь шкуры, которая удерживает вместе все его внутренности. Получается, что шкура коня, который имеет вдвое больший размер, испытывает вдвое большее давление со стороны внутренних органов. Значит, если мы будем увеличивать размер нашего сферического коня, то в какой-то момент прочность шкуры окажется недостаточной, чтобы удерживать увеличивающийся вес внутренних органов, и коня разорвёт. Мы только что получили очень важный результат: предел размера коня определяется не искусством селекционера и не биологическими законами, а законами физики.

Закон масштабирования, пример которого мы только что рассмотрели, не зависит от формы масштабируемого тела, поэтому мы ничего не потеряли, представив коня в виде сферы. Если бы я попытался вычислить объём настоящего коня и выяснить, как изменится его вес и площадь шкуры при увеличении линейных размеров, я получил бы точно такой же результат, только потратил бы на это неизмеримо больше времени и сил. Поэтому при исследовании данной задачи сферический конь — это совершенно оправданная абстракция.

Теперь рассмотрим более приближённую к реальности аппроксимацию коня. Изобразим его в виде двух сфер, соединённых штангой:

Всё, что мы говорили о масштабировании, остаётся в силе не только для коня целиком, но и для его отдельных частей. Например, голова суперконя будет весить в 8 раз больше, чем голова обычного коня. Теперь посмотрим на шею, представленную штангой. Прочность этой штанги пропорциональна её сечению — очевидно, что более толстая штанга будет более прочной, чем более тонкая. При увеличении диаметра штанги в 2 раза площадь её сечения увеличивается в 4 раза. Но смотрите: вес головы суперконя в 8 раз больше веса головы обычного коня, а прочность шеи — только в 4 раза. Таким образом, если мы будем увеличивать размеры коня, то в какой-то момент его штанга, то есть шея, переломится под весом его головы. Этим объясняется, почему головы гигантских динозавров были так непропорционально малы по сравнению с их туловищами и почему животные с большими по сравнению с их туловищами головами, такие как дельфины и киты, живут в воде: сила Архимеда компенсирует вес их тел, и требования к прочности существенно смягчаются.

Теперь мы понимаем, почему физик из анекдота не посоветовал бизнесмену попросту вырастить суперконя, который бы и победил на скачках. Даже используя такую простую абстракцию, как сферический конь, физик смог вывести ряд важных следствий относительно возможных размеров наземных млекопитающих, потому что принципы масштабирования физических объектов не зависят от их формы.

Используя наш простой пример, можно сделать ещё много интересных выводов, но вернёмся к Галилею. Самым важным среди его достижений следует считать созданное 400 лет назад описание движения — прекрасный пример абстрагирования от несущественных деталей.

Одним из наиболее очевидных результатов наивного наблюдения за окружающим миром является, на первый взгляд, очевидный вывод, что общее описание движения невозможно, потому что все тела движутся по-разному. Перо нежно порхает по ветру, в то время как камень стремительно падает вниз. Шары для боулинга, практически не меняя своей скорости, прямолинейно катятся по настилу, а газонокосилка ни за что не поедет, пока не заведёшь мотор. Галилей пришёл к выводу, что это наиболее очевидное свойство движения в реальном мире является наименее существенным для понимания его сути.

Маршалл Маклюэн мог бы сказать, что среда есть сообщение, однако Галилей значительно раньше обнаружил, что среда только мешает получать точные экспериментальные данные.

Философы до Галилея утверждали, что среда играет важную роль в движении, что движение без среды невозможно, но Галилей убедительно показал, что суть движения может быть понята лишь путём устранения влияния среды: «Каким образом не замечаете вы совершенно очевидных и часто встречающихся явлений, когда из двух тел, движущихся в воде, одно перемещается, например, во сто раз быстрее другого, тогда как при падении в воздухе скорость одного превышает скорость другого едва ли на одну сотую долю? Так, мраморное яйцо опускается в воде в сто раз быстрее куриного яйца; при падении же в воздухе с высоты двадцати локтей оно опережает куриное яйцо едва ли на четыре пальца»[2].

Основываясь на этом рассуждении, Галилей пришёл к правильному выводу о том, что если мы полностью удалим среду, то все тела будут падать совершенно одинаково. Кроме того, он приготовил ответ на критику тех, кто не был готов к его абстрагированию от несущественных деталей для обнажения существенных: «Я не хотел бы, чтобы вы поступали как многие другие, отклоняя беседу от главного вопроса, и придирались к выражению, в котором я допустил отклонение от действительности на один волосок, желая скрыть за этой небольшой погрешностью ошибку другого, грубую, как якорный канат»[3].

Аристотель, по утверждению Галилея, сосредоточивал своё внимание не на сходстве в движении объектов, а на различиях, которые объясняются влияниям среды. С позиции Галилея, идеальный мир, в котором среда полностью отсутствует, и является тем самым «отклонением от действительности на один волосок».

После достижения указанного уровня абстракции всё остальное оказывается очень простым: Галилей утверждал, что если убрать все внешние силы, действующие на тело, то предоставленное само себе, оно будет продолжать движение вдоль прямой линии с постоянной скоростью, независимо от того, как оно двигалось ранее.

В качестве примера ситуации, когда среда оказывает на движущееся тело очень слабое влияние, Галилей приводил скользящий по льду тяжёлый камень: его движение остаётся прямолинейным, а скорость более-менее постоянной. Аристотель же считал, что естественным состоянием всех тел является состояние покоя, потому что он не сумел абстрагироваться от влияния среды.

Чем так важен вышеприведённый вывод Галилея? Он стирает различия между телом, которое движется равномерно, и телом, которое покоится. Движущиеся и покоящиеся тела идентичны в том, что они будут продолжать соответственно двигаться или покоиться до тех пор, пока на них не подействует внешняя сила. Единственное различие между движущимся и покоящимся телом — это величина скорости. Но постоянная скорость математически ничем не отличается от нулевой, ведь ноль — это точно такое же вещественное число, как и все остальные, не лучше и не хуже.

Это наблюдение позволило Галилею перенести своё внимание с положений объектов в пространстве на изменение их положений, то есть на скорость их перемещения. Если вы признаете, что в отсутствие каких-либо сил тело будет двигаться прямолинейно и с постоянной скоростью, то вам останется один маленький шаг (ну и, возможно, в придачу ещё ум Ньютона), чтобы догадаться, что причиной изменения скорости тела является приложенная к нему внешняя сила. А если сила будет непостоянной во времени, то и скорость тела будет изменяться не монотонно. Об этом нам и говорит закон Ньютона. Вооружившись этим законом, можно понять законы движения всех окружающих тел и характер всех сил в природе — это те вещи, которые стоят за всеми изменениями во Вселенной, и они могут быть изучены: с этого момента натурфилософия превращается в современную физику. Но для того чтобы прийти к упомянутому закону, Ньютону понадобилось, подобно Галилею, отбросить несущественные детали и оставить только то, что действительно важно, а именно характер изменения скорости тела.

К сожалению, в попытках максимально подробно изучить какой-нибудь предмет или проблему мы часто упускаем что-нибудь важное и зацикливаемся на второстепенном. Если примеры Галилея и Аристотеля кажутся вам слишком далёкими, рассмотрим более близкую к нам ситуацию. Один мой родственник вместе с несколькими своими знакомыми — все они имели высшее образование, а один из них даже был учителем физики — вложили более миллиона долларов в проект по разработке нового двигателя, единственным источником энергии которого должно было быть гравитационное поле Земли. Движимые мечтами о преодолении мирового энергетического кризиса, уходе от зависимости от иностранной нефти и возможности сказочно разбогатеть, они убеждали себя в том, что машина обязательно заработает, нужно только приложить ещё немного усилий и потратить ещё немного денег.

Эти люди, разумеется, не были настолько наивными, чтобы считать, что можно получить что-то из ничего. Они не подозревали, что вкладывают деньги в очередной вечный двигатель. Они предполагали, что этот двигатель каким-то образом будет извлекать энергию из гравитационного поля. Устройство имело такое огромное количество шестернёй, шкивов и рычагов, что инвесторы были не в состоянии ни прояснить себе принцип действия машины, ни понять особенностей её конструкции. Во время демонстрации после освобождения тормоза главный маховик машины начинал вращаться, постепенно набирая обороты, и продолжал своё вращение в течение всего времени демонстрации. Это казалось инвесторам очень убедительным.

Несмотря на чрезвычайную сложность деталей машины, если абстрагироваться от всего несущественного и второстепенного, можно понять, почему такая машина не должна работать. Рассмотрим принципиальную схему прототипа описанной машины, приведённую на рисунке. Я изобразил начальное и конечное положение механизма, ведь как бы ни была сложна машина, рано или поздно все вращающиеся и движущиеся части должны оказаться в том же самом положении, в котором они были в момент запуска, и вечно работающая машина должна проходить через это состояние бесконечное количество раз.

Итак, рано или поздно механизм должен пройти через такое положение, когда каждый рычаг, каждый шкив, каждая гайка, каждый болт окажутся в точности на том же месте и в том же положении, что и в начальный момент. То есть ничто не сдвинулось, ничего не упало, ничего не испарилось.