Страх физики

22
18
20
22
24
26
28
30

Предконференционное возбуждение было вызвано ожиданием запланированного на первый день сообщения о сенсационном открытии. Специализировавшийся в области атомной физики экспериментатор Уиллис Лэмб собирался представить важный результат, полученный им в Колумбийском университете благодаря микроволновой технологии, разработанной в ходе работы над военным радаром. Одним из ранних успехов квантовой механики был расчёт энергий внешних атомных электронов. Однако Лэмб обнаружил, что уровни энергии электронов в атомах слегка отличаются от тех, которые получаются из квантовомеханических расчётов, выполненных без учёта эффектов теории относительности. Это явление сегодня известно как лэмбовский сдвиг. Затем ожидался доклад маститых экспериментаторов И. Л. Раби и П. Куша, обнаруживших аналогичные отклонения у атомов водорода и других элементов. Все трое — Лэмб, Раби и Куш — позже удостоились за своё открытие Нобелевской премии.

Вызов был брошен. Чем может быть объяснён подобный сдвиг и как произвести расчёт, чтобы избежать бесконечных результатов, вызванных необходимостью учёта всех возможных виртуальных электрон-позитронных пар? Мысль о том, что объединение теории относительности и квантовой механики, приводящее к описанным выше проблемам, может привести также и к объяснению лэмбовского сдвига, в то время была лишь смелым предположением. Учёт эффектов теории относительности приводил к такому усложнению процесса вычисления, что никто и понятия не имел, как такие вычисления производить. На конференции присутствовали молодые восходящие звёзды теоретической физики: Ричард Фейнман, Джулиан Швингер и Синъитиро Томонага.

Каждый из них самостоятельно разрабатывал свой способ борьбы с вычислительными трудностями, создавая то, что впоследствии стало называться квантовой теорией поля. Они надеялись, и их надежды позже оправдались, что эти способы позволят каким-то образом изолировать, если не полностью исключить из результата бесконечности, возникающие при учёте всех виртуальных пар частиц, делавших теорию невероятно сложной, хотя предварительные расчёты давали результаты, согласующиеся с теорией относительности.

К моменту завершения своей работы им удалось создать новый способ представления элементарных процессов и продемонстрировать, что теория электромагнетизма может последовательно сочетаться с квантовой механикой и теорией относительности, за что почти 20 лет спустя они заслуженно разделили Нобелевскую премию. Но в то время, когда проходила конференция, ничего этого известно ещё не было. Как можно учесть взаимодействие электрона в атоме с мириадами виртуальных электрон-позитронных пар, спонтанно возникающих из вакуума в ответ на поля, создаваемые самими электронами?

На конференции был и Ханс Бете, к тому времени уже выдающийся теоретик и один из лидеров Манхэттенского проекта. Бете тоже впоследствии получил Нобелевскую премию за работу, демонстрирующую, что термоядерные реакции действительно служат источником энергии звёзд. Он был настолько вдохновлён тем, что услышал от теоретиков и экспериментаторов, что, вернувшись в Корнелльский университет, немедленно занялся расчётом эффекта лэмбовского сдвига. Через пять дней после окончания конференции он подготовил статью, в который утверждал, что получил отличное теоретическое согласие с величиной наблюдаемого эффекта. Бете всегда был известен своей способностью безупречно выполнять сложные вычисления на доске или на бумаге. Тем не менее его замечательный расчёт лэмбовского сдвига не был полностью самосогласованным в плане объединения квантовой механики и теории относительности. Впрочем, получение окончательного строгого результата не особо волновало Бете, его больше интересовала правильность выбранного им пути. Для получения строгого результата в то время ещё просто не существовало необходимых математических инструментов, и он использовал то, что оказалось под рукой.

Он решил, что раз мы не в состоянии последовательно описать релятивистское движение электрона, то можно попытаться произвести «гибридные» вычисления, явно добавив такие эффекты, как рождение и аннигиляция электрон-позитронных пар, к уравнениям движения электронов, выведенных квантовыми механиками в 1920-х и 1930-х годах, которые решаются достаточно просто. Однако он обнаружил, что учёт эффектов рождения виртуальных электрон-позитронных пар всё равно приводит к расходимости решения. Как с этим справиться?

Основываясь на предложении, услышанном им на конференции, Бете произвёл расчёт дважды: один раз для электрона в атоме водорода и один раз для свободного электрона. Хотя в каждом конкретном случае результат получался бесконечным, он надеялся, что при вычитании одного результата из другого бесконечности также вычтутся друг из друга, и «в сухом остатке» мы получим интересующий нас эффект в виде конечного числа — величины лэмбовского сдвига. К сожалению, у него ничего не получилось. Тогда он предположил, что, возможно, используемая математическая модель, в которой мы учитываем рождение виртуальных частиц вплоть до бесконечно малых пространственных и временных масштабов, просто не имеет физического смысла, и следует, руководствуясь физической интуицией, наложить на неё дополнительные ограничения. Бете предложил ограничить число учитываемых при расчёте виртуальных частиц, так чтобы их общая энергия не превышала по порядку величины массу электрона.

Я напомню, что квантовая механика разрешает процессы, в которых участвует множество высокоэнергетичных виртуальных частиц, если промежуток времени, в течение которого эти процессы происходят, достаточно мал, чтобы квантово-механическая неопределённость энергии превосходила суммарную энергию, необходимую для протекания этих процессов. Бете же утверждал, что, если теория претендует на согласие с общей теорией относительности, она должна содержать что-то, ограничивающее максимально возможную энергию виртуальных процессов. То есть он предложил попросту игнорировать бесконечное количество рождений виртуальных пар, оборвав расчёт на каком-нибудь наперёд выбранном значении энергии. Его окончательный расчёт лэмбовского сдвига учитывал только такие процессы, энергия которых была меньше энергии покоя электрона. Кроме того, Бете был полностью согласен с критическими возражениями о слишком волюнтаристском подходе к выбору накладываемых на теорию ограничений.

В то время действительно не было никаких реальных обоснований для выбора конкретного значения энергии, на котором следует обрывать вычисления, но его подход позволял получить разумное конечное приближение для величины лэмбовского сдвига.

Позже Фейнман, Швингер и Томонага устранили несогласованности в методе Бете. Они показали, что в полной теории, последовательно включающей в себя квантовую механику и теорию относительности, на каждом этапе расчёта вклад «хвоста», то есть самых высокоэнергетичных виртуальных пар, в окончательное значение измеряемой в эксперименте характеристики оказывается исчезающе малым. Предсказания созданной на основе их подхода объединённой теории находятся в прекрасном согласии с измеренными в экспериментах значениями лэмбовского сдвига, более того, на сегодняшний день это один из лучших примеров согласия теоретических и экспериментальных результатов за всю историю физики! Но своей ранней работой Бете подтвердил то, что все уже давно знали о нём: он был «плоть от плоти физики». Он хитроумно использовал имеющиеся под рукой инструменты для получения результатов. В духе концепции сферического коня в вакууме он смело отбросил все лишние, по его мнению, детали, связанные с виртуальными процессами, и проложил тропу, по которой его последователи прошли к современной квантовой теории поля. Эта теория стала фундаментом современной физики элементарных частиц, и я ещё вернусь к ней в заключительной главе моей книги.

Итак, мы прошли путь от сферических коней в вакууме до солнечных нейтрино, после чего обратили свой взор на взрывающиеся звёзды и расширение Вселенной и, наконец, закончили наш путь на Шелтер-Айленде. Красная нить, проходящая через все эти вещи, соединяет всех физиков, независимо от их специализации. При взгляде сверху мир на поверхности представляется очень сложным. Где-то очень глубоко под этой поверхностью, как мы надеемся, существуют простые правила, управляющие этим миром. Одна из важнейших целей физики — выкопать эти правила. Единственная возможность сделать это — максимально сузить ареал поиска путём упрощения модели и отбрасывания несущественных деталей. Если мы не будем представлять коня в виде сферы, помещать сложную машину в чёрный ящик, выбрасывать бесконечное количество виртуальных частиц, а вместо этого попробуем понять всё сразу, мы не поймём ничего. Мы можем либо сидеть и ждать, что на нас снизойдёт откровение, либо идти вперёд, не обращая внимания на препятствия и второстепенные детали, сводя проблему к тем задачам, которые мы уже умеем решать, — и только так можно совершить очередной прорыв в науке.

Глава 2.

ИСКУССТВО ЧИСЕЛ

Физика отличается от математики, как секс от мастурбации.

Ричард Фейнман

Язык — это человеческое изобретение, которое является зеркалом души. Именно посредством языка хороший роман, пьеса или стихотворение учат нас быть людьми. С другой стороны, математика — это язык природы, который служит зеркалом физического мира. Это точный, чистый, развитый и строгий язык. Несмотря на то что эти качества делают язык математики идеальным для описания явлений природы, они же делают его непригодным для отражения сугубо человеческих проблем и страданий. Так возникает центральная дилемма «двух культур».

Нравится нам это или нет, но числа являются главными действующими лицами физической драмы. Всё, что мы делаем в физике, в том числе всё, что мы думаем о физическом мире, в конечном итоге сводится к числам. Причём характер наших размышлений об этих числах полностью определяется тем, откуда они берутся. Таким образом, физики и математики думают о числах принципиально разными способами. В отличие от математиков, физики используют числа в дополнение к своей физической интуиции, а не вместо неё. Математики же занимаются абстрактными структурами, и их совершенно не волнует, могут ли придуманные ими математические объекты существовать в природе. Для математика число существует само по себе, как отдельная реальность, в то время как для физика оно, как правило, не имеет смысла в отрыве от физического мира.

Числа в физике несут на себе багаж связей с измеряемыми физическими величинами. А любой путешественник знает, что багаж имеет как плохую, так и хорошую сторону. С одной стороны, багаж тяжело тащить, его могут украсть, за него приходится дополнительно платить. С другой стороны, в багаже мы везём множество полезных вещей, необходимых нам в путешествии. С одной стороны, багаж сковывает вашу свободу передвижения, с другой — освобождает от необходимости стирать бельё каждый день. Точно так же и числа: с одной стороны, они усмиряют нашу фантазию, ограничивая её жёсткими математическими рамками, с другой — являются неотъемлемым атрибутом упрощения картины мира. Числа освобождают нас от груза несущественных деталей, показывая, что мы можем игнорировать, а что нет.

То, что я сказал, находится в прямом противоречии с преобладающим мнением, что числа и математические соотношения только усложняют понимание и их следует избегать любой ценой, даже в научно-популярных книгах. Стивен Хокинг в своей «Краткой истории времени» заявил, что каждое уравнение в популярной книге сокращает количество продаж вдвое. Выбирая между количественным и качественным объяснением какого-нибудь явления, большинство людей, вероятно, предпочтут второе. Мне представляется, что главная причина общего отвращения к математике лежит в области социологии. Математическая безграмотность в нашем обществе возводится едва ли не в достоинство — неспособность сложить пять чисел, чтобы проверить правильность счёта в ресторане, считается проявлением человечности, а не глупости. Но я считаю, что корни этого явления в том, что в начальной школе детям не показывают, что стоит за тем или иным числом, и числа представляются им не столь важными в повседневной жизни, как слова.

Я, помню, был поражён, когда несколько лет назад, читая курс физики для нефизиков в Йельском университете — храме литературной грамотности, — обнаружил, что 35% студентов, в числе которых были выпускники исторических и социологических факультетов, не могли назвать даже порядок величины населения Соединённых Штатов! Многие думали, что в США проживает от одного до десяти миллионов человек — меньше, чем в одном только Нью-Йорке.

На мой взгляд, это признак глубоких проблем в нашей национальной системе образования. И дело даже не в том, что, живя рядом с Нью-Йорком, люди не отдают себе отчёта в том, что население всей Америки не может быть меньше населения одного Нью-Йорка. И даже не в непонимании того, что страна с населением 1 миллион человек будет радикально отличаться от страны с населением 100 миллионов. Главная проблема в том, что для большинства из этих студентов такие числа, как 1 миллион или 100 миллионов не имели никакого объективного смысла. Они никогда не пытались сопоставить, например, миллион чашек кофе с количеством людей, которые их выпивают утром в миллионном городе. Многие не могли назвать мне даже приблизительно расстояние от восточного до западного побережья Соединённых Штатов — они не умели заставить свой мозг сделать простейшую прикидку: умножить расстояние, которое они проезжают за день на автомобиле (около 800 километров) на число дней (5–6 дней), которое необходимо, чтобы пересечь Американский континент, и понять, что это расстояние ближе к 4000–5000 километрам, нежели к 10 000 или к 20 000.