Страх физики

22
18
20
22
24
26
28
30

Попытка разобрать принцип работы этой машины с инженерной точки зрения упирается в необходимость учёта движения огромного количества деталей и действующих на них сил. Рассмотрение же с физической точки зрения предлагает вместо этого сосредоточиться на главном. Заключим всю конструкцию в чёрный ящик, или, если хотите, в чёрную сферу и оставим только одно простое требование: если что-то производит работу, то энергия, необходимая для этой работы, должна быть извлечена изнутри этого чего-то или получена извне. Но если за полный цикл внутри ничего не изменилось, то и энергии взяться неоткуда!

Но откуда мы узнаём, что важно, а что нет, приступая к решению задачи? Как правило, ниоткуда. Всё, что нам остаётся, это идти вперёд и надеяться на то, что выбранный нами путь — верный, а полученные в конце его результаты будут иметь смысл. Как любил повторять Ричард Фейнман, «К чёрту торпеды, полный вперёд!»[4]

Предположим, к примеру, что мы хотим понять внутреннее устройство Солнца. Для того чтобы обеспечить наблюдаемую светимость солнечной поверхности, в его горячих и плотных недрах должна выделяться энергия, эквивалентная ежесекундному взрыву сотни миллиардов водородных бомб! Невозможно даже представить себе, как подступиться к задаче точного расчёта всех чудовищных турбулентных процессов, происходящих внутри Солнца. Однако, к счастью для нас, солнечная печь бесперебойно и спокойно функционирует на протяжении миллиардов лет, из чего мы можем предположить, что происходящие внутри Солнца процессы хорошо сбалансированы. Простейшее альтернативное и, что более важно, поддающееся аналитическому исследованию решение базируется на предположении, что недра Солнца находятся в состоянии гидростатического равновесия. Это означает, что ядерные реакции, протекающие внутри Солнца, выделяют такое количество энергии, которое достаточно для разогрева солнечного вещества до температуры, приводящей к такому давлению, которое способно уравновесить вес вышележащих слоёв солнечного вещества, не давая им рухнуть вниз под действием силы тяжести. Если Солнце немного сжимается, температура и давление в его недрах растут, что приводит к ускорению ядерных реакций, выделению дополнительного количества энергии, ещё больше разогревающей солнечные недра, что приводит к ещё дальнейшему росту температуры, увеличению давления и расширению Солнца. Аналогично, если Солнце немного расширится, его ядро охладится, ядерные реакции замедлятся, температура ядра упадёт ещё больше, и это приведёт к сжатию Солнца до прежнего размера. Таким способом Солнце автоматически поддерживает скорость ядерных реакций на определённом уровне в течение длительного промежутка времени. В каком то смысле Солнце работает подобно поршню в двигателе вашего автомобиля, когда вы едете по шоссе с постоянной скоростью.

Однако одного этого предположения ещё недостаточно, чтобы построить численную модель внутреннего устройства Солнца. Следует сделать дополнительные упрощающие предположения. Во-первых, будем считать Солнце шаром. В частности, это означает, что Солнце обладает сферической симметрией, то есть в каком бы направлении из центра Солнца мы ни двинулись, мы всегда будем наблюдать одни и те же изменения состояния солнечного вещества. Его свойства — химический состав, плотность, давление и температура — будут зависеть только от расстояния от центра, но не от направления. Во-вторых, мы пренебрежём влиянием множества других факторов, которые могут сильно усложнить расчёт, например исключим из рассмотрения магнитные поля.

В отличие от предположения о гидростатическом равновесии, перечисленные в предыдущем абзаце предположения не следуют из основных физических законов. Более того, мы знаем из наблюдений, что Солнце вращается вокруг своей оси, что на его поверхности имеются тёмные образования, называемые солнечными пятнами, что разные части солнечной поверхности обращаются с разной скоростью и что количество солнечных пятен меняется циклически с периодом около одиннадцати лет. Но мы игнорируем все эти сложности, потому что, с одной стороны, они, прошу прощения за тавтологию, сильно осложняют расчёты, а с другой стороны — выглядит вполне правдоподобным предположение, что кинетическая энергия вращения Солнца и процессы, происходящие на солнечной поверхности, играют очень незначительную роль в общем энерговыделении Солнца, и их можно без зазрения совести отбросить в свете нашей задачи.

Но насколько хорошо работает эта модель? Лучше, чем мы могли бы ожидать. Она предсказывает размеры Солнца, температуру его поверхности, светимость и возраст с очень хорошей точностью. Более того, подобно хрустальному бокалу, вибрирующему, когда вы водите мокрым пальцем по его краю, или Земле, колеблющейся, когда где-то в её коре происходит землетрясение, Солнце тоже испытывает колебания, возбуждаемые происходящими в его недрах процессами. Эти колебания приводят к периодическим движениям поверхности Солнца, которые можно наблюдать с Земли, и их частота и амплитуда могут многое рассказать нам о строении солнечных недр, подобно тому как сейсмические колебания в земной коре позволяют нам обнаруживать залежи полезных ископаемых или нефтяные месторождения. Стандартная солнечная модель — модель, основанная на перечисленных выше предположениях, — более-менее точно предсказывает частотный спектр наблюдаемых колебаний солнечной поверхности.

Таким образом, представление Солнца в виде сферического газового шара в вакууме даёт нам модель, которая оказывается весьма близкой к реально наблюдаемой картине. Но существует одна проблема. Помимо света и тепла, идущие внутри Солнца ядерные реакции производят и множество других вещей, наиболее интересными из которых являются элементарные частицы, называемые нейтрино. Эти частицы имеют важное отличие от частиц, из которых состоит обычное вещество: они настолько слабо взаимодействуют с ним, что большинство нейтрино пролетают сквозь всю толщу Солнца и сквозь всю толщу Земли, даже не замечая её.

За то время, в течение которого вычитали предыдущее предложение, сквозь ваше тело пролетело порядка триллиона нейтрино, рождённых в раскалённых солнечных недрах. Причём неважно, днём или ночью вы читаете эти строки, поскольку толща Земли, как я уже сказал, не является для нейтрино сколько-нибудь заметным препятствием. Предсказанные в 1930-х годах нейтрино сегодня играют очень важную роль в нашем понимании природы. Но солнечные нейтрино поставили учёных в тупик.

Стандартная солнечная модель, так замечательно предсказывающая все основные наблюдательные характеристики Солнца, позволяет нам вычислить, какое количество нейтрино, рождаемых в недрах Солнца, должно достигать земной поверхности. И хотя вы, возможно, подумали, что этих неуловимых тварей невозможно обнаружить, учёные всё-таки научились их регистрировать. Для этого были построены огромные подземные лаборатории, в которых экспериментаторы сутками напролёт терпеливо ждут, когда одно из множества нейтрино будет обнаружено детектором. Такие детекторы называются нейтринными телескопами. Первый из них был построен в глубокой шахте в штате Южная Дакота. Приёмником нейтринного излучения в нём служил горизонтальный цилиндрический бак длиной около 14 метров, содержащий примерно 400 000 литров перхлорэтилена. В редких случаях один из атомов хлора в этом объёме под действием нейтрино превращался в атом аргона, что давало возможность оценить число летящих к нам от Солнца нейтрино. После двадцати пяти лет исследований было обнаружено, что количество регистрируемых нейтрино в 3–4 раза меньше, чем предсказывает Стандартная солнечная модель.

Вашей первой реакцией на это сообщение может быть пожимание плечами — зачем так много шума из ничего. Предсказание результатов, которые по порядку величины согласуются с экспериментами, уже можно рассматривать как большой успех, поскольку эти предсказания опираются на довольно грубые предположения об устройстве солнечной печи.

И действительно, многие физики восприняли это всего лишь как свидетельство того, что по крайней мере одно из принятых приближений является слишком грубым. Другие, прежде всего те, кто участвовал в разработке Стандартной солнечной модели, утверждали, что это крайне маловероятно, поскольку во всех остальных предсказаниях модель демонстрировала прекрасное согласие с наблюдениями.

В 1990-х годах, однако, учёные провели серию героических экспериментов, которые наконец раскрыли эту тайну. Первая серия экспериментов проводилась на гигантском подземном детекторе, содержавшем 50 000 тонн воды. Этот детектор позволял обнаруживать достаточно много нейтрино, чтобы с очень высокой точностью подтвердить, что поток нейтрино, идущий от Солнца, действительно меньше, чем ожидалось.

Затем в Садбери в Канаде был построен подземный детектор нового поколения, в котором вместо обычной воды использовалась тяжёлая. Я не упомянул, что все предыдущие нейтринные детекторы были способны регистрировать только один тип нейтрино — электронный. А в природе существует три типа этих элементарных частиц: электронные, мюонные и тау-лептонные. Но поскольку в ходе ядерных реакций внутри Солнца генерируются только электронные нейтрино, считалось логичным именно их и ловить в первую очередь.

Одним из возможных путей решения проблемы солнечных нейтрино могло бы стать предположение, что электронные нейтрино, рождаемые в недрах Солнца, за время своего пути к Земле каким-то образом превращаются в нейтрино других типов. Это потребовало бы привлечения для объяснения новых физических процессов, не описываемых теорией, известной как Стандартная модель физики элементарных частиц, в частности это потребовало бы, чтобы нейтрино, считавшиеся до этого безмассовыми, имели очень небольшую массу. В этом случае часть электронных нейтрино должна превращаться в нейтрино других типов, и количество регистрируемых на Земле электронных нейтрино окажется меньше, чем их исходное количество, рождённое в центре Солнца.

Детектор на тяжёлой воде был в состоянии одновременно обнаруживать электронные, мюонные и тау-лептонные нейтрино. И вот, когда пыль улеглась и были подсчитаны все пойманные типы нейтрино, оказалось, что общее количество нейтрино, прилетающих от Солнца, в точности соответствует предсказаниям Стандартной солнечной модели! Так были открыты нейтринные осцилляции, массы нейтрино, а несколько счастливых физиков получили Нобелевскую премию. В очередной раз модель сферического коня в вакууме, только на этот раз — коня Гелиоса, оказалась мощным инструментом изучения природы.

Мы можем попытаться распространить представление о Солнце как о сферическом газовом шаре в вакууме и на другие звёзды, более крупные, более мелкие, более старые, более молодые. В частности, простая модель гидростатического равновесия даёт нам грубое представление об изменениях, которые происходят в звёздах на протяжении их жизни. Например, в какой-то момент рождения звезды, когда она формируется из сжимающегося облака межзвёздного газа, в ней «включаются» термоядерные реакции, и она начинает светить за счёт собственного источника энергии. Если звезда слишком мала, гравитационной энергии сжимающегося газового облака может оказаться недостаточно для достижения температуры, при которой включаются реакции синтеза. В этом случае звезда никогда не загорится. Примером такой «недозвезды» является Юпитер. Однако для массивных газовых облаков процесс сжатия продолжается до включения ядерных реакций, и выделяемое ими тепло повышает температуру звёздных недр, что создаёт дополнительное давление, останавливающее сжатие и стабилизирующее звезду. В конце жизни звезды водород, служащий топливом для ядерных реакций, начинает истощаться, равновесие нарушается, и звезда снова сжимается, пока температура в её ядре не достигнет значений, при которых становится возможным новый набор реакций, топливом для которых служит образовавшийся на предыдущем этапе гелий.

Для многих звёзд этот процесс повторяется несколько раз: каждый раз, когда истощается очередной элемент, служивший топливом для ядерных реакций, ядро звезды опять сжимается, поднимая температуру и запуская новый набор реакций синтеза. В то время как внешние слои звезды раздуваются до невероятных размеров, превращая звезду в красный гигант, ядро становится всё горячее и плотнее, пока почти всё его вещество не превратится в железо. На этом всё заканчивается, потому что железо не может служить топливом для ядерных реакций, идущих с высвобождением энергии. Протоны и нейтроны ядер железа так сильно связаны друг с другом, что преобразовать его в ядро другого элемента можно, лишь затратив энергию. Что происходит после этого? Одно из двух: либо звезда медленно умирает, освобождаясь от распухшей внешней оболочки и превращаясь в белый карлик, либо происходит одно из самых грандиозных событий во Вселенной — звезда взрывается!

Взрывающаяся звезда, или сверхновая, выделяет в короткий промежуток такое количество энергии, что светит как вся галактика, ярче ста миллиардов обычных звёзд. За секунды до начала взрыва звезда, спокойно «дожигающая» остатки ядерного горючего, внезапно выходит из состояния гидростатического равновесия. В какой-то момент генерация энергии оказывается недостаточной, чтобы поддерживать температуру, необходимую для создания давления, сдерживающего вес вышележащих слоёв, и они начинают падать на ядро звезды, которое к этому времени имеет массу, сравнимую с массой Солнца, а размер — порядка размера Земли. Это ядро, в свою очередь, менее чем за секунду сжимается до размера порядка 10 километров. Его плотность достигает гигантских значений — одна чайная ложка такого вещества весит тысячи тонн. Ещё более важно, что при таких плотностях атомы железа переходят в совершенно новое, нейтронное, состояние. Ядро как будто бы внезапно застывает, «схватывается», подобно затвердевшему клею. Падающее на ядро вещество отскакивает от него и порождает мощную ударную волну, распространяющуюся наружу и раздувающую оболочку звезды, которая и видна нам как сверхновая.

Эта модель коллапса ядра и последующего взрыва звезды была построена в течение десятилетий кропотливой работы физиков и математиков, после того как Чандрасекар в 1939 году впервые предположил возможность подобного катастрофического сценария. И всё это не более чем развитие простой идеи гидростатического равновесия, которое, как мы считаем, определяет структуру Солнца. Ещё без малого пятьдесят лет после работ Чандрасекара описания процессов, приводящих к взрыву сверхновой, оставались чистой воды теоретическими спекуляциями. Даже когда астрономы научились наблюдать вспышки сверхновых в других галактиках, все их наблюдения сводились только к изучению видимого оптического излучения сбрасываемой оболочки и не позволяли непосредственно увидеть то, что происходит внутри звезды.

Всё изменилось 23 февраля 1987 года. В этот день взорвалась сверхновая в Большом Магеллановом Облаке — карликовой галактике, являющейся спутником нашей звёздной системы, находящейся от нас на расстоянии около 150 000 световых лет. Это была самая близкая к нам сверхновая, вспыхнувшая за последние четыре столетия. Впервые было экспериментально подтверждено, что оптический фейерверк — это лишь верхушка айсберга. Энергия в тысячи раз большая, чем наблюдается в оптическом диапазоне, уносится — возможно, вы уже догадались — почти неуловимыми нейтрино. Я говорю «почти», поскольку, несмотря на то что нейтрино свободно пролетают через толщу Земли, всё же очень редко они взаимодействуют с веществом и попадаются в наши детекторы.