Но это же абсурд, потому что расстояния от Аспена до Солнца (в полдень) и от Кливленда до Солнца (тоже в полдень) различаются на два с половиной километра — 250 000 сантиметров — из-за того, что Аспен и Кливленд располагаются на разной высоте над уровнем моря. Чтобы такое точное расстояние имело физический смысл, мы должны очень точно указать точку на поверхности Земли, в которой мы производим измерения. Даже если мы будем измерять расстояние между центром Земли и центром Солнца (самый разумный выбор), то это подразумевает, что мы предварительно измерили диаметры Земли и Солнца с точностью до сантиметра, не говоря уже о том, что произвести на практике измерения астрономических расстояний с такой точностью крайне проблематично, если вообще возможно.
Очевидно, что, написав число 14 960 000 000 000, мы на самом деле имели в виду приблизительное, а не точное значение. Но с какой точностью мы на самом деле знаем расстояние от Земли до Солнца? Подобного вопроса не возникает, когда мы записываем число в виде 1,4960∙1013 см. Принято считать, что в экспоненциальной записи в мантиссе сохраняются только достоверные цифры, и данная запись говорит о том, что реальное расстояние лежит в пределах между 1,49595∙1013 см и 1,49605∙1013 см. Если бы расстояние было известно нам с вдесятеро лучшей точностью, мы записали бы его в виде: 1,49600∙1013 см.
Таким образом, существует огромная разница между 1,4960∙1013 см и 14 960 000 000 000 см. Чтобы представить, насколько она огромна, подсчитаем абсолютную погрешность приведённого числа. Эта погрешность составляет 0,0001∙1013 см — один миллиард сантиметров, или десять тысяч километров, — почти диаметр Земли!
«И это физики называют точным результатом?» — спросите вы. Да. Несмотря на то что абсолютная величина погрешности — миллиард сантиметров — выглядит чудовищной, она составляет меньше одной десятитысячной расстояния от Земли до Солнца. Если бы вы с такой же точностью измерили свой рост, вы узнали бы его с точностью до двух десятых долей миллиметра.
Красота записи 1,4960∙1013 состоит ещё и в том, что множитель 1013 сразу же задаёт «масштаб» числа, а мантисса 1,4960 указывает на его точность. Чем больше десятичных разрядов содержит мантисса, тем точнее мы знаем физическую величину. Глядя на число, записанное в экспоненциальной форме, вы сразу же понимаете, чем можно пренебречь. Масштаб 1013 см говорит, что физические эффекты, проявляющиеся на масштабах в несколько сантиметров, метров, километров и даже тысяч километров, скорее всего, можно не учитывать. А как я говорил в предыдущей главе, самое главное в физике — это понимать, чем можно, а чем нельзя пренебречь.
До сих пор я игнорировал, возможно, наиболее важный факт, который придаёт числу 1,4960∙1013 см физический смысл. Это записанное после него сокращение «см». Без этих «см» мы бы не знали, к какой физической величине относится число, а сакраментальное «см» говорит о том, что это расстояние. Данная спецификация называется
Вероятно, самым удивительным свойством окружающего мира, позволяющим упростить его картину, является то, что в природе существуют только три независимые размерные величины: длина, время и масса[6]. Размерности всех остальных величин могут быть выражены через комбинацию трёх основных. Неважно, измеряете ли вы скорость в милях в час, метрах в секунду или стадиях в неделю, — всё это лишь различные способы выражения расстояния, делённого на время.
Это свойство имеет замечательные последствия. Из-за того что в природе существуют только три независимые размерные величины, количество комбинаций, которые можно из них сконструировать, ограничено. Это означает, что каждая физическая величина связана с любой другой физической величиной некоторым простым способом, и это существенно ограничивает количество различных математических соотношений, возможных в физике. Не побоюсь утверждать, что не существует более важного инструмента, используемого физиками, чем размерности физических величин. Размерности не только облегчают запоминание уравнений, но и существенно упрощают картину физического мира. Как я покажу позже, анализ размерностей даёт важный ориентир для разумной интерпретации той информации, которую мы получаем от наших органов чувств или измерительных приборов. Описывая физические величины, мы оперируем их размерностями.
Когда мы анализировали законы масштабирования сферического коня, мы работали с соотношениями размерностей длины и массы. Например, нам было важно установить, как соотносится изменение объёма коня с изменением его линейных размеров. Анализируя размерности, можно пойти дальше, чтобы понять, как оценить объём предмета произвольной формы. Как я уже говорил, неважно, какими единицами мы пользуемся для измерения объёма: кубическими дюймами, кубическими сантиметрами или кубическими футами, важно лишь, что все эти единицы
А вот пример простейшего анализа размерностей. Предположим, что вы забыли, что следует сделать, чтобы найти пройденное телом расстояние: умножить скорость на время или разделить. Посмотрев на размерности входящих в формулу величин, вы мгновенно получите правильный ответ. Размерность скорости — [метр]/[секунда], размерность длины — [метр]. Для того чтобы получить расстояние, то есть [метр], необходимо [метр]/[секунда] умножить на [секунда], а именно скорость умножить на время. Поколение за поколением студентов безуспешно зубрит сложные формулы, вместо того чтобы просто составить входящие в них физические величины так, чтобы размерность справа от знака равенства была такой же, как и размерность слева.
Следует обратить особое внимание на то, что анализ размерности никоим образом не гарантирует, что вы получите правильный ответ, но он гарантированно подскажет, когда вы ошибаетесь. Он как слега при переходе через болото: не факт, что, пользуясь ею, вы не заблудитесь, но зато наверняка не утонете.
Говорят, что фортуна благоволит подготовленному уму. Ничто не может быть более справедливым в отношении физики, и анализ размерности поможет подготовить ум к неожиданностям. Результат простого анализа размерностей часто оказывается настолько потрясающим, что может показаться магией. Для большей убедительности я приведу пример из современной физики, в котором известное и неизвестное оказались очень тесно переплетены. В этой истории анализ размерностей помог прийти к пониманию одной из четырёх фундаментальных сил природы —
Физики, изучающие элементарные частицы, пытающиеся найти основные кирпичи мироздания и объяснить фундаментальные взаимодействия, разработали систему единиц измерения, которая идеально приспособлена для анализа размерностей. В принципе три основные размерности — длина, время и масса — независимы, но на практике между ними есть фундаментальная связь, осуществляемая посредством так называемых фундаментальных физических констант. Например, если бы существовала некая универсальная константа, связывающая время и расстояние, я мог бы выразить расстояние через время путём простого умножения времени на эту константу. Впрочем, почему «если бы»? Такая константа действительно существует — это скорость света в вакууме. Один из постулатов созданной Эйнштейном теории относительности гласит, что скорость света в вакууме не зависит ни от скорости источника света, ни от скорости наблюдателя: как бы мы её ни измеряли, мы всегда будем получать одно и то же значение — в этом и состоит её универсальность. Эту константу принято обозначать латинской буквой
Существование такой универсальной константы, как скорость света, позволяет установить взаимно однозначное соответствие между расстоянием и временем. Это позволяет исключить одну из этих размерностей из системы единиц. А именно: мы можем либо оставить только единицу длины, а время выражать через неё, либо наоборот. При этом очень удобно выбрать такие единицы измерения времени и расстояния, в которых скорость света оказывается равной единице. Например, мы можем выбрать в качестве единицы длины световую секунду, тогда скорость света будет равна одной световой секунде в секунду. В такой системе единиц расстояние и эквивалентное ему время будут выражаться одним и тем же числом!
Пойдём дальше. Если численное значение световой длины и соответствующего ей светового времени в построенной нами системе единиц одинаковы, то стоит ли рассматривать длину и время как величины разной размерности? Вместо этого можно присвоить расстоянию и времени одинаковые размерности, тогда скорость, которая суть расстояние, делённое на время, станет безразмерной величиной. Физически это эквивалентно тому, что мы бы измеряли скорость в (безразмерных) долях скорости света, то есть если я напишу, что скорость равна 1/2, это попросту будет означать, что она равна половине скорости света. Очевидно, что для корректного построения подобной системы нам понадобится универсальная эталонная скорость, относительно которой мы будем измерять все остальные скорости, — ну так скорость света и является таким универсальным эталоном.
Итак, после приравнивания скорости света к единице и объявления её безразмерной величиной у нас остаются только две независимых размерности: время и масса (или, если так будет удобнее, расстояние и масса). Одним из следствий такого необычного подхода является то, что он позволяет, помимо расстояния и времени, приравнять размерности и других величин. Например, знаменитая формула Эйнштейна
Но это ещё не всё. Существует ещё одна фундаментальная физическая постоянная, её принято обозначать буквой
В итоге мы создали систему, в которой три основные размерности свели к одной. Теперь мы можем описать весь физический мир, используя только размерность массы, или только размерность длины, или только размерность времени — не принципиально, какую размерность мы выберем, это уже будет результат произвольного соглашения. В физике высоких энергий удобно использовать в качестве базовой размерность энергии. Например, объём, имеющий в привычной системе единиц размерность [длина3], в новой системе, в которой с =
На первый взгляд описанный подход выглядит непривычно, но вся его прелесть состоит в том, что, оставляя только один независимый размерный параметр, мы можем существенно упростить анализ и свести очень сложные явления к одной физической величине. Порой это выглядит как настоящая магия. Например, предположим, что мы обнаружили новую элементарную частицу, масса которой в три раза превышает массу протона, или в энергетических единицах составляет около 3 миллиардов электрон-вольт — 3 ГэВ (гигаэлектрон-вольта). Если эта частица нестабильна, то каково ожидаемое время её жизни? Может показаться, что, не зная никаких подробностей о структуре частицы, сделать подобную оценку невозможно. Однако, используя анализ размерностей, можно выдвинуть кое-какие предположения.
Единственная размерная характеристика, присутствующая в этой задаче, — масса, или, что эквивалентно, энергия покоя частицы. Поскольку размерность времени в нашей новой системе единиц эквивалентна обратной размерности массы, разумная оценка времени жизни частицы будет составлять k/(3 ГэВ), где