Страх физики

22
18
20
22
24
26
28
30

Может ли в таком случае Теория сферического коня в вакууме претендовать на роль Общей теории коней? Априори мы не можем доказать это утверждение, но у нас есть по крайней мере три различных способа его опровергнуть. Наше предположение будет ложным, если:

• на каком-то масштабе теория предсказывает ерунду;

• существует более простая модель, чем сферический конь, предсказания которой совпадают с предсказанием Теории сферического коня;

• мы можем поставить эксперимент, который на каком-то масштабе даст результат, противоречащий предсказаниям теории.

Вот пример такого эксперимента. Допустим, я бросаю в сферического коня маленький кристаллик соли. Теория предсказывает, что кристаллик отскочит от коня:

Проведя серию экспериментов с реальным конём, я обнаруживаю, что кристаллик соли отскакивает от коня не всегда. Он не отскакивает, например, если попадает коню в рот.

Точно так же изучение зависимости законов природы от масштаба явлений даёт учёным в руки орудия для охоты на новые фундаментальные физические законы. Классическим примером является история изучения слабого взаимодействия А вот ещё несколько примеров.

Масштабирование фундаментальных законов физики можно производить как «вверх», так и «вниз». В отличие от экономики, в физике оба этих метода прекрасно работают. Мы можем исследовать поведение теории на всё меньших масштабах в попытке обнаружить на этом пути новые идеи. Или же, наоборот, имея теорию, описывающую то, что происходит на очень малых масштабах, недоступных нашей измерительной аппаратуре, мы можем путём усреднения мелкомасштабных флуктуации рассчитать её предсказания на более крупных масштабах, таких, на которых мы уже способны проверить предсказания экспериментально.

Эти два подхода охватывают весь спектр сегодняшних исследований на передовом рубеже науки. В главе 2 я описал историю создания теории сильного взаимодействия, которое связывает кварки внутри протонов и нейтронов. Важнейшую роль в ней играет идея асимптотической свободы. Теория сильного взаимодействия — квантовая хромодинамика (КХД) — отличается от КЭД эффектом, который создаёт облако виртуальных частиц. В КЭД этот эффект приводит к появлению «шубы», окружающей электрон и экранирующей его электрический заряд для удалённого наблюдателя. Чем ближе мы находимся к электрону, тем больший эффективный заряд мы наблюдаем. В то же время, как обнаружили Вильчек и Политцер, сильный заряд[19] кварка в КХД ведёт себя наоборот. Чем ближе друг к другу находятся кварки, тем слабее они взаимодействуют друг с другом: «шуба» из виртуальных частиц не уменьшает, а увеличивает эффективный сильный заряд кварка для удалённого наблюдателя!

Вооружившись теорией, правильно описывающей взаимодействие кварков на малых расстояниях, можно попытаться проследить, что происходит при увеличении масштаба. Перейдя к расстояниям, сравнимым с размерами протонов и нейтронов, путём усреднения флуктуации, связанных с поведением отдельных кварков, можно надеяться получить эффективную теорию, описывающую поведение протонов и нейтронов. К сожалению, из-за того что взаимодействие кварков на таких расстояниях оказывается очень сильным, никому до сих пор не удалось получить хорошей согласованности расчётов с экспериментом, но есть надежда, что с дальнейшим ростом вычислительных мощностей и производительности компьютеров эта задача будет в конце концов решена.

Большой успех масштабируемого подхода к теории сильного взаимодействия в начале 1970-х годов придал теоретикам смелости устремиться дальше в глубины материи, на расстояния, ещё недоступные ускорителям того времени. В этом смысле они стали последователями Льва Ландау — советского Фейнмана. В 1950-х годах этот блестящий физик уже показал, что электрический заряд электрона эффективно увеличивается при уменьшении расстояния между электроном и пробной частицей. Если быть точным, то он показал, что если экстраполировать предсказания КЭД на невообразимо малые расстояния, то эффективный электрический заряд электрона становится чрезвычайно большим. Вероятно, это был первый «звонок» к изменению КЭД, хотя в то время результат Ландау ещё не воспринимался как обоснование необходимости модификации КЭД на малых масштабах.

В КЭД взаимодействие становится сильнее, по мере того как растут энергии участвующих во взаимодействии частиц, а в КХД, наоборот, с ростом энергии частиц взаимодействие между ними ослабевает. Поведение слабого взаимодействия находится где-то посередине между этими двумя случаями. Примерно в 1975 году Говард Джорджи, Хелен Куинн и Стивен Вайнберг выполнили вычисления, которые изменили наше представление о границах высоких энергий. Они исследовали поведение сильного, слабого и электромагнитного взаимодействий на различных расстояниях и получили потрясающий результат. Оказалось, что на расстояниях примерно на пятнадцать порядков меньших, чем когда-либо исследовавшихся в лабораториях, сила всех трёх фундаментальных взаимодействий становится одинаковой. Именно этого можно было бы ожидать, если бы в природе существовала какая-то новая, неизвестная ранее симметрия, проявляющаяся на указанных расстояниях.

Идея о существовании такой симметрии, имеющей отношение ко всем трём фундаментальным взаимодействиям, была независимо от Джорджи высказана Глэшоу. Представление о том, что с уменьшением масштаба Вселенная должна становиться всё более симметричной, идеально согласуется с этим открытием. Так началась эпоха теории Великого объединения, в которой все фундаментальные взаимодействия, за исключением гравитации, сводятся на достаточно малых масштабах к единому универсальному взаимодействию.

Однако по прошествии нескольких десятков лет у нас по-прежнему нет никаких прямых доказательств того, что эта невероятная экстраполяция является правильной. Последние исследования на суперускорителях типа Теватрона или БАК вроде бы дают косвенные свидетельства в пользу возможности Великого объединения, но тут теоретики обнаружили, что никакого объединения не получится, если мы не дополним существующую Стандартную модель новым феноменом, который получил название суперсимметрия.

Суперсимметрия, как следует из названия, представляет собой ещё один тип симметрии в мире элементарных частиц. Давно известно, что все элементарные частицы могут быть разделены на два типа, получившие названия фермионы и бозоны. Фермионы, названные в честь Энрико Ферми, это частицы, квантово-механический момент количества движения которых, называемый спином, имеет полуцелое значение (в единицах постоянной Планка): 1/2, 3/2 и так далее. Бозоны, получившие название в честь индийского физика Шотендроната Бозе, относятся к частицам, спин которых имеет целое значение: 0, 1, 2…

Поведение фермионов и бозонов радикально различается. Тот факт, что электроны являются фермионами, отвечает, например, за существование химии в том виде, в каком мы её знаем. Как впервые показал Вольфганг Паули, два фермиона не могут одновременно находиться в одном и том же квантовом состоянии. Из-за этого электроны в атоме вынуждены оставаться на более высоких энергетических уровнях, если более низкие уже заняты другими электронами.

В то же время бозоны не только могут существовать в одном и том же квантовом состоянии, но и стремятся в него попасть, если там уже находятся другие бозоны. Это приводит к образованию таких когерентных состояний, как бозе-конденсат. Например, фоновые поля, приводящие к спонтанному нарушению фундаментальных симметрии Вселенной, представляют собой подобные бозе-конденсаты. Недавно при весьма специфических условиях экспериментаторам удалось создать в лаборатории бозе-конденсат, состоящий из сотен или тысяч атомов. В надежде, что эти очень специфические конфигурации могут привести в будущем к созданию новых технологий, авторы первых экспериментов по созданию бозе-конденсата были удостоены Нобелевской премии.

Несмотря на такое сильное различие между поведением фермионов и бозонов, суперсимметрия ставит в соответствие каждому фермиону суперсимметричного партнёра — бозон, а каждому бозону — суперсимметричный фермион. Суперсимметрия предполагает, что суперпартнёры во всём, что не касается величины их спина, должны быть полностью идентичными, то есть иметь одинаковый заряд и массу и так далее. Как можно заметить, ничего подобного в природе не наблюдается. Но вы наверняка уже догадываетесь, каким будет моё объяснение этого феномена. Если суперсимметрия является нарушенной симметрией, то суперпартнёры известных нам фермионов и бозонов могут оказаться настолько тяжёлыми, что мы попросту пока не в состоянии обнаружить их на существующих ускорителях.

Что может послужить мотивацией для введения новой математической симметрии, которая никак не проявляется в наблюдаемом мире? Так же, как в случае Стандартной модели, введение такой симметрии может разрешить некоторые парадоксы существующей теории. На самом деле последовательное обоснование причин для введения нарушенной суперсимметрии в теорию элементарных частиц слишком сложно, чтобы приводить его здесь; я попытался сделать это в другой недавно вышедшей книге. Одной из главных причин, однако, является то, что эта симметрия может помочь объяснить, почему электрослабое взаимодействие проявляется на гораздо более малых расстояниях, чем гравитационное.

Есть ещё один интересный момент. Если предположить, что суперсимметрия действительно существует и нарушается на расстояниях намного меньших, чем характерные расстояния, на которых нарушается симметрия электрослабого взаимодействия, а затем добавить в теорию множество новых тяжёлых частиц, которые затем учесть в расчётах силы известных взаимодействий, то силы всех взаимодействий сравняются на расстояниях приблизительно на шестнадцать порядков меньших, чем размер протона.