В отсутствие какой бы то ни было дополнительной информации нам не остаётся ничего лучшего, как надеяться, что этот параметр не очень сильно отличается от единицы. Мы можем перевести электрон-вольты в привычные секунды, используя соотношение: 1/1 эВ = 6,5∙10-16 с. Таким образом, время жизни нашей новой частицы должно быть порядка
Разумеется, в действительности никакой магии тут нет. Мы не получили что-то из ничего, просто анализ размерностей дал характерный масштаб нашей задачи. Этот анализ говорит, что «естественное время жизни» нестабильной частицы такой массы составляет порядка
Анализ размерностей даёт нам очень важную информацию для размышлений. Если параметр
В 1974 году произошло одно знаменательное и драматическое событие. В течение 1950-х и 1960-х годов энергии, до которых разгонялись частицы в ускорителях, неуклонно росли. Помимо энергий росло и количество одновременно ускоряемых частиц, что позволило перейти от столкновений частиц с неподвижной мишенью к столкновениям встречных пучков, а это, в свою очередь, дополнительно увеличило энергии сталкивающихся частиц.
В ходе этих экспериментов было обнаружено множество неизвестных ранее типов частиц. Когда количество новых частиц перевалило за сотню, теоретики схватились за голову, но в начале 1960-х годов Мюррей Гелл-Ман в Калтехе разработал
Наша оценка была 10-25 секунды, значит, константа
В 1973 году было сделано важное теоретическое открытие. Работая над теорией, которая позволила бы объединить электромагнитное и слабое взаимодействие, Дэвид Гросс и Фрэнк Вильчек из Принстона и независимо от них Дэвид Политцер из Гарварда разработали очень привлекательную теорию, которая претендовала на роль теории сильного взаимодействия. В этой теории каждый кварк мог иметь одно из трёх различных свойств, которые были в рабочем порядке условно названы «цветами», а сама теория получила название
Наконец появилась надежда, что кто-нибудь сумеет выполнить расчёты, на основании которых можно будет сравнить предсказания теории с экспериментом. Поскольку на близких расстояниях силы взаимодействия между кварками малы, то можно начать расчёт с невзаимодействующих кварков, а потом добавлять методом последовательных приближений всё более и более сильные взаимодействия и в конце получить относительно точное описание их взаимодействия.
В то время как теоретики начали исследовать особенность поведения кварков, получившую название
И вот в ноябре 1974 года, с разницей в несколько недель, две разные группы экспериментаторов обнаружили новую частицу с массой примерно в три раза больше массы протона. Но привлекла к себе внимание частица не своей массой, а необычно большим временем жизни, которое в 100 раз превышало время жизни других частиц с похожими массами. Один из физиков сравнил этот факт с обнаружением затерянного в джунглях племени людей, продолжительность жизни в котором составляет 10 000 лет.
Пытаясь объяснить этот феномен, Политцер и его коллега Том Эпплкуист пришли к выводу, что обнаруженная тяжёлая частица состоит из нового типа кварков, предсказанных теоретически несколькими годами ранее и названных
Это приводит к тому, что им требуется большее время, чтобы «найти» друг друга и проаннигилировать. Грубая оценка времени жизни такого связанного состояния была получена путём масштабирования силы взаимодействия кварков от размера протона до предполагаемого размера новой частицы. Оценка по порядку величины совпала с экспериментальными данными. Так КХД получила своё первое экспериментальное подтверждение.
В последующие годы эксперименты, проведённые при ещё более высоких энергиях сталкивающихся частиц, показали, что используемое в расчётах приближение является достаточно надёжным, и многократно подтвердили существование предсказанной квантовой хромодинамикой асимптотической свободы. Несмотря на то что до сих пор никому так и не удалось выполнить полный и точный расчёт поведения кварков на таких расстояниях, когда их взаимодействие становится очень сильным, количество полученных экспериментальных доказательств уже настолько велико, что сегодня никто не сомневается в справедливости КХД. В 2004 году Гросс, Вильчек и Политцер были удостоены Нобелевской премии за предсказание асимптотической свободы, открывшей дорогу к экспериментальной проверке квантовой хромодинамики. Без ключевых соображений, основанных на анализе размерностей физических величин, это открытие, вполне возможно, могло и не состояться или, по крайней мере, задержаться на долгие годы. Анализ размерностей применим не только в физике элементарных частиц, он является универсальным методом, который даёт нам точку опоры, позволяющую протестировать наше представление о реальности.
Хотя физическое мировоззрение и начинается с чисел, используемых для описания природы, оно не останавливается на них. Помимо чисел физикам нужен язык, при помощи которого они могли бы оперировать числами, как словами, и этим языком является математика. Сразу предвижу чисто практический вопрос: почему бы не пользоваться более естественным языком? Но у нас нет выбора. Ещё Галилей 400 лет назад писал: «Философия написана в величественной книге (я имею в виду Вселенную), которая постоянно открыта нашему взору, но понять её может лишь тот, кто сначала научится постигать её язык и толковать знаки, которыми она написана. Написана же она на языке математики, и знаки её — треугольники, круги и другие геометрические фигуры, без которых человек не смог бы понять в ней ни единого слова; без них он был бы обречён блуждать в потёмках по лабиринту»[7].
Сегодня утверждение, что математика является языком физики, воспринимается как банальность, наподобие той, что французский язык является языком любви. Но это утверждение никак не объясняет, почему мы не можем перевести на другой язык математические выражения так же легко, как стихи Бодлера. В вопросах любви даже те из нас, чей родной язык не является французским, разбираются достаточно хорошо и без перевода, чего нельзя сказать о математических вычислениях.
Дело в том, что математика — это больше, чем просто язык. Чтобы показать, насколько больше, я одолжу один аргумент у Ричарда Фейнмана. Помимо того, что Фейнман был харизматиком, он являлся ещё и одним из величайших умов среди физиков-теоретиков двадцатого столетия. Фейнман обладал редким даром просто и понятно объяснять сложные вещи, чем, мне кажется, отчасти объясняется тот факт, что у него всегда был собственный способ понимания и собственный способ вывода почти всех результатов классической физики.
Объясняя роль математики в физике[8], он, в свою очередь, приводил в пример Исаака Ньютона. Величайшим открытием Ньютона был, безусловно, закон всемирного тяготения. Показав, что та же сила, которая удерживает нас на поверхности Земли, отвечает за движения всех небесных объектов, Ньютон сделал физику универсальной наукой. Он показал, что у нас есть возможность описать не только управляющие нами законы и наше место во Вселенной, но и саму Вселенную. Мы сегодня склонны принимать это как должное, но один из самых замечательных законов во Вселенной говорит нам, что та же самая сила, которая управляет полётом бейсбольного мяча, управляет движением Земли вокруг Солнца, движением Солнца вокруг центра Галактики, движением Галактики относительно других галактик и эволюцией самой Вселенной, хотя относительно справедливости последнего утверждения — насчёт Вселенной — вопрос пока остаётся открытым.
Ньютоновский закон всемирного тяготения может быть сформулирован в словесной форме: сила гравитационного притяжения между двумя объектами направлена вдоль линии, соединяющей эти объекты, пропорциональна произведению масс объектов и обратно пропорциональна квадрату расстояния между ними. Словесное определение выглядит громоздким, но это не важно. В сочетании со вторым законом Ньютона, утверждающим, что тело реагирует на действующую на него силу путём изменения скорости в направлении действия силы, и это изменение пропорционально величине силы и обратно пропорционально массе тела, закон всемирного тяготения позволяет описать всё. Любое движение любого количества тяготеющих тел может быть выведено из этих двух законов. Но как? Я мог бы дать эту формулировку лучшему в мире лингвисту и попросить его вывести из неё возраст Вселенной, используя семантические правила, но подозреваю, Вселенная прекратит своё существование раньше, чем ему удастся получить ответ.
Суть в том, что математика представляет собой набор утверждений и выводов, подчинённых правилам логики. Например, Иоганн Кеплер в начале XVII века, проанализировав множество наблюдательных данных, пришёл к выводу, что планеты движутся вокруг Солнца особым образом. Если соединить планету с Солнцем отрезком прямой, то этот отрезок будет за одинаковые промежутки времени «заметать» одинаковые площади. Математически можно показать, что из этого утверждения следует, что, когда планета находится ближе к Солнцу, она движется по своей орбите быстрее, чем когда она находится дальше. Ньютон, в свою очередь, показал, что открытый Кеплером закон может быть строго математически получен из приведённых выше формулировок закона всемирного тяготения и второго закона Ньютона.
Попробуйте, если сумеете, вывести второй закон Кеплера из законов Ньютона, используя только правила английского (или русского) языка… Но при помощи математики, в данном случае на основе простых геометрических соображений, вы сделаете это за несколько минут. За подробностями обратитесь к «Математическим началам натуральной философии» Ньютона, а ещё лучше — прочитайте замечательную книгу Фейнмана «Характер физических законов».