Глава II. Математические определения и преподавание
1. Я должен говорить здесь об общих определениях в математических науках; по крайней мере к этому меня обязывает название настоящей главы. Но мне невозможно будет оставаться в рамках предмета в такой мере, в какой это требовалось бы правилом единства действия; я не смогу трактовать вопроса, не затрагивая отчасти других ближайших вопросов, и потому прошу простить мне уклонения вправо и влево, которые встретятся в дальнейшем.
Что разумеют под хорошим определением? Для философа или для ученого это есть определение, которое приложимо ко всем определяемым предметам и только к ним; такое определение удовлетворяет правилам логики. Но при преподавании дело обстоит иначе. Здесь хорошим определением будет то, которое понято учениками.
Чем объяснить, что многие умы отказываются понимать математику? Не парадоксально ли это? В самом деле, вот наука, которая апеллирует только к основным принципам логики, например к принципу противоречия, апеллирует к тому, что составляет, так сказать, скелет нашего разумения, к тому, от чего нельзя отказаться, не отказываясь вместе с тем от самого мышления, и все же встречаются люди, которые находят эту науку темной! И этих людей большинство! Пусть бы они оказались неспособными изобретать – это еще допустимо. Но они не понимают доказательств, которые им предлагают, они остаются слепыми, когда им подносят свет, который для нас горит чистым и ярким пламенем, – вот что чрезвычайно странно.
А между тем достаточно и небольшого опыта, доставляемого экзаменами, чтобы убедиться в том, что эти слепые отнюдь не являются исключениями. Здесь имеется проблема, которая не легко решается, но которая должна занимать всех, желающих посвятить себя делу преподавания.
Что значит понимать? Имеет ли это слово для всех одно и то же значение? Понять доказательство теоремы – значит ли это рассмотреть последовательно каждый из силлогизмов, из коих составляется доказательство, и констатировать, что он правилен и согласуется с ходом задачи? Точно так же понять определение – значит ли это только признать, что смысл всех употребленных в нем терминов уже известен, и констатировать, что определение не заключает в себе никакого противоречия?
«Да», – скажут одни, которые, констатировав отсутствие противоречия в определении, говорят: «мы его поняли». «Нет», – скажет большинство. Почти все люди оказываются более требовательными; они хотят не только знать, правильны ли все силлогизмы доказательства, но еще и знать, почему силлогизмы связываются в данном, а не в другом порядке. Пока им кажется, что эта связь рождена капризом, а не разумом в постоянном сознании преследуемой цели, они думают, что не поняли доказательства.
Без сомнения, они сами не отдают себе отчета в том, чего они, собственно, требуют, и не могут формулировать своего желания; но если они не находят удовлетворения, то они смутно чувствуют, что чего-то им недостает. Что же тогда происходит? Вначале они еще схватывают те очевидные вещи, которые представляются их взору; но, так как последние связаны чрезвычайно тонкой нитью с предшествующими и последующими, то они не оставляют никакого следа в их мозгу; они тотчас забываются. Освещенные на одно мгновение, они сейчас же исчезают в сумраке вечной ночи. А когда эти люди следят за дальнейшим развитием доказательства, для них исчезает и прежняя эфемерная ясность, так как теоремы опираются одна на другую, а теоремы, которые им нужны, уже забыты. Таким образом, эти люди становятся неспособными понимать математику.
Не всегда здесь виной преподаватель; зачастую ум людей, нуждающийся в руководящей нити, слишком ленив для поисков ее. Но, чтобы помочь непонимающим, мы должны сначала хорошо узнать то, что их останавливает.
Другие же спросят, для чего все это служит; они не поймут силлогизмов, если они не нашли вокруг себя на практике или в природе основания для того или иного математического понятия. Под всяким словом они хотят разглядеть чувственный образ; необходимо, чтобы определение вызывало этот образ, чтобы на каждой стадии доказательства они видели его превращения и эволюцию. Лишь при таком условии они поймут и удержат в памяти доказательство. Такие люди часто заблуждаются относительно самих себя; они не слушают рассуждений, а рассматривают фигуры, они воображают, что поняли, тогда как они только видели.
2. Сколько различных тенденций! Нужно ли с ними бороться? Или нужно ими воспользоваться? А если мы хотим с ними бороться, то какой из них должны мы благоприятствовать? Нужно ли доказывать тем, которые довольствуются чистой логикой, что они видят только одну сторону вещей? Или, напротив, нужно доказывать тем, которые не удовлетворяются так легко, что то, чего они требуют, не является необходимостью?
Другими словами, должны ли мы принуждать молодых людей к тому, чтобы они изменяли природу своего ума? Такая попытка была бы бесплодна. Мы не обладаем философским камнем, который дал бы нам возможность превращать один в другой вверенные нам металлы; все, что мы можем сделать, – это работать, приспосабливаясь к их свойствам.
Многие дети неспособны стать математиками, тем не менее им необходимо преподавать математику. Да и сами математики не все отлиты по одной и той же модели. Достаточно прочитать их труды, чтобы заметить существование умов двух типов: логиков, как Вейерштрасс, и интуитивистов, как Риман. Такая же разница наблюдается и среди студентов. Одни любят разрабатывать задачи, как они выражаются, «путем анализа», другие – «путем геометрии».
Было бы бесполезно пытаться изменить что-либо в этом отношении, да и, помимо того, было ли бы это желательно?
Хорошо, что существуют логики и интуитивисты; кто рискнет утверждать, что он предпочел бы, чтобы Вейерштрасс никогда не писал или чтобы Римана не было? Таким образом, мы должны примириться с разнообразием умов или, еще лучше, мы должны ему радоваться.
3. Так как слово «понимать» имеет несколько значений, то определения, наиболее понятные для одних людей, не будут совпадать с определениями, которые подходят для других. Мы имеем такие определения, которые стараются вызвать в нас образ, и такие, которые лишь комбинируют пустые формы, доступные интеллекту, но только ему одному, определения, которые по своей абстрактности лишены всякого материального содержания.
Я не знаю, нужно ли приводить примеры. Однако мы приведем некоторые, и прежде всего мы остановимся на определении дробей, которое даст нам крайний пример. В начальных школах, чтобы определить дробь, разрезают яблоко или пирог; конечно, разрезание происходит в уме, а не в действительности, ибо я не думаю, чтобы бюджет начальной школы позволял такую расточительность. В высшей нормальной школе или на факультетах, напротив, скажут: дробь – это совокупность двух целых чисел, разделенных горизонтальной чертой; определят при помощи соглашений те операции, которым можно подвергать эти символы; докажут, что правила для этих операций те же, какие употребляются в исчислении целых чисел и, наконец, обнаружат, что, умножая, согласно этим правилам, дробь на знаменатель, мы находим числитель. Такое определение будет здесь уместным, потому что его преподносят молодым людям, которые уже давно освоились с понятием о дробях – они уже делили яблоки и другие предметы; ум которых уже изощрен математической эрудицией; которые хотят, наконец, получить чисто логическое определение. Но как был бы ошеломлен начинающий, к которому подошли бы с подобным определением.
Таковы же определения, которые вы найдете в удивительной и несколько раз премированной книге Гильберта «Основания геометрии». Посмотрим, как он начинает: вообразим три системы вещей, которые мы назовем точками, прямыми и плоскостями. Что это за «вещи» – мы не знаем, да и незачем нам это знать. Было бы даже греховно стараться это узнать. Все, на что мы можем претендовать, сводится к тому, чтобы мы усвоили относящиеся к ним аксиомы, например следующую: две различные точки всегда определяют прямую, и комментарий к ней: вместо «определяют» мы можем сказать, что прямая проходит через две точки, или соединяет эти две точки, или что две точки расположены на прямой. Значит, фраза «точки расположены на прямой» является просто синонимом фразы «точки определяют прямую». Вот книга, которую я очень высоко ценю, но которую я не рекомендую лицеисту. Впрочем, я мог бы это сделать без опаски, так как в чтении ее он ушел бы не очень далеко.
Я взял крайние примеры; никакой преподаватель, конечно, не предложил бы таких определений. Но разве не остается такая же опасность и тогда, когда мы стоим ближе к действительности?
Вот в четвертом классе. Преподаватель диктует: «окружность – это геометрическое место точек на плоскости, находящихся на одном и том же расстоянии от одной внутренней точки, именуемой центром». Хороший ученик вписывает эту фразу в свою тетрадь; плохой ученик рисует в ней «человечков», но ни тот, ни другой ничего не поняли. Тогда преподаватель берет мел и рисует круг на доске. «Ага, – думают ученики, – почему он не сказал сразу: окружность – это кружок, и мы бы сразу поняли». Без сомнения, преподаватель прав. Определение учеников не имело бы никакой ценности, потому что не могло бы служить ни для какого доказательства, и в особенности не привило бы им спасительной привычки анализировать свои понятия. Но им надобно было бы доказать, что они не понимают того, что им кажется понятным, надобно было бы заставить их отдать себе отчет в грубости их первоначального представления, сделать так, чтобы они сами пожелали очистить и улучшить это представление.