Теорема века. Мир с точки зрения математики

22
18
20
22
24
26
28
30

«Рассмотрим прежде всего предмет 1». Заметим, что в это рассмотрение мы отнюдь не включаем понятия о числе, ибо само собой разумеется, что 1 в данном случае является только символом и что мы не стремимся узнать его значение. «Группы, образованные этим предметом, повторенным два, три или несколько раз…» Ну, здесь уже дело меняется; если мы вводим слова «два», «три» и в особенности «несколько», мы вводим понятие числа, а в таком случае понятие конечного целого числа, к которому нас приведет это рассуждение, окажется запоздалым. Автор был слишком предусмотрителен, чтобы не заметить этого petitio principii. В конце своего труда он пытается загладить погрешность.

Гильберт вводит затем два простых предмета 1 и =, рассматривает все комбинации из этих двух предметов, затем комбинации этих комбинаций и т. д. Само собой разумеется, что при этом нужно забыть обычное значение этих двух знаков, не нужно приписывать им никакого значения. Затем Гильберт распределяет эти комбинации в два класса, в класс «сущего» и в класс «не сущего», и впредь до следующего соглашения это распределение совершенно произвольно. Всякое утвердительное предложение показывает нам, что комбинация принадлежит классу сущего; всякое отрицательное предложение показывает, что известная комбинация относится к классу не сущего.

VII

Отметим теперь некоторое различие, имеющее важное значение. Для Рассела какой-нибудь предмет, который он обозначает буквой х, есть предмет абсолютно неопределенный, относительно которого он не делает никаких предположений; для Гильберта этот предмет есть одна из комбинаций, составленных из символов 1 и =, не нужно представлять, будто здесь вводится что-либо новое помимо комбинации уже определенных предметов. Гильберт, впрочем, формулирует свою мысль самым точным образом, и я считаю необходимым воспроизвести его слова полностью: «Неопределенные, которые фигурируют в аксиомах (вместо понятий „нечто“ и „все“ обыкновенной логики), представляют собой исключительно совокупность предметов и комбинаций, которыми мы уже владеем при данном состоянии теории или которые мы начинаем вводить. Как только мы из рассматриваемых аксиом начнем выводить предложения, мы получим право заменять упомянутые предметы только этими предметами и этими комбинациями. Но если мы увеличиваем число основных предметов, то не нужно забывать, что тем самым аксиомы также испытывают новое расширение, и они, следовательно, должны быть снова проверены и, в случае нужды, изменены».

Здесь мы имеем полный контраст с точкой зрения Рассела. В той постановке, в какой вопрос ставится у этого философа, мы можем на место x ставить не только известные нам, но и какие угодно предметы. Рассел остается верным своей точке зрения, именно точке зрения понятия. Он исходит из общей идеи существующего и обогащает ее, придавая ей новые качества. Напротив, Гильберт считает существенными одни только комбинации известных уже предметов, так что (имея в виду лишь одну сторону его идеи) можно сказать, что Гильберт стоит на точке зрения объема понятий.

VIII

Проследим за изложением идей Гильберта. Он вводит две аксиомы, которые формулирует на своем символическом языке, но которые на языке таких профанов, как мы, обозначают, что всякое количество равно самому себе и что всякая операция, произведенная над двумя тождественными количествами, дает тождественные результаты. В такой формулировке аксиомы очевидны, но выразить их в таком виде значило бы исказить мысль Гильберта. С точки зрения Гильберта, математика комбинирует только чистые символы, и настоящий математик должен рассуждать о них, не заботясь об их смысле. Его аксиомы не являются для него тем же, чем они являются для обыкновенного человека.

Он рассматривает эти аксиомы как выраженное при помощи постулатов определение символа =, не опороченного еще каким-либо значением. Но чтобы оправдать это определение, необходимо доказать, что эти две аксиомы не ведут ни к какому противоречию.

Для этого Гильберт пользуется рассуждением, изложенным у него в разделе III, не замечая, по-видимому, что он прибегает к полной индукции.

IX

Конец мемуара Гильберта совершенно загадочен, и мы на нем не будем подробно останавливаться. Противоречия здесь умножаются; чувствуется, что автор сознает смутно petitio principii, в которое он впал, и что он напрасно старается замазать трещины своего рассуждения.

Что же это значит? В тот момент, когда необходимо доказать, что определение целого числа при помощи аксиомы полной индукции не влечет противоречия, Гильберт от этого отделывается, как отделываются Рассел и Кутюра, ибо трудность слишком велика.

X. Геометрия

Геометрия, говорит Кутюра, есть обширная область доктрин, в которой не фигурирует принцип полной индукции. В известной мере это верно; нельзя сказать, чтобы он совсем не входил, но он входит мало. Если обратиться к «Rational Geometry», написанной Халстедом (N. Y., John Wiley and Sons, 1904) и построенной на принципах Гильберта, то можно заметить, что принцип полной индукции появляется в первый раз на с. 114, если только я не пропустил его раньше, что очень возможно.

Таким образом, геометрия, которая еще несколько лет тому назад казалась областью, в которой господство интуиции бесспорно, является теперь областью, в которой торжествует логистика. Этим лучше всего измеряется важность геометрических трудов Гильберта и тот глубокий отпечаток, который они оставили на наших понятиях.

Но не нужно поддаваться обману. Какова в конце концов основная теорема геометрии? Она заключается в том, что аксиомы геометрии не заключают в себе противоречия, а это не может быть доказано без принципа индукции.

Как же Гильберт доказывает этот существенный пункт? Опираясь на анализ, через анализ на арифметику и через арифметику на принцип индукции.

И если когда-нибудь изобретут другое доказательство, то придется все же опереться на этот принцип, потому что выводов из тех аксиом, логическую совместимость которых нужно доказать, может быть бесконечное множество.

XI. Заключение

Наш вывод заключается прежде всего в том, что на принцип индукции нельзя смотреть как на скрытое определение целого числа.

Вот три истины:

принцип полной индукции;

постулат Евклида;

физический закон, согласно которому фосфор плавится при 44° (приводится у Леруа).

Говорят, что эти истины являются скрытыми определениями: первое есть определение целого числа, второе – прямой линии, третье – фосфора.