Теорема века. Мир с точки зрения математики

22
18
20
22
24
26
28
30

«Относительное произведение двух отношений есть отношение».

«Отношение имеет место между двумя терминами» и т. д.

В некоторых случаях можно было бы избежать неудобства такого выражения, но иногда оно требуется существом дела. Отношение не может быть понято без двух терминов; нельзя иметь интуиции отношения, не имея в то же время интуиции двух его терминов; мало того, мы должны усмотреть, что есть два термина, ибо для того, чтобы можно было постигнуть отношение, необходимо, чтобы этих терминов было два и только два.

V. Арифметика

Я подхожу к тому, кто Кутюра называет теорией расположения (или порядка) и что является основанием арифметики в собственном смысле этого слова. Кутюра начинает с формулировки пяти аксиом Пеано, независимость которых доказали Пеано и Падоа.

1. Нуль есть целое число.

2. Нуль не следует ни за каким целым числом.

3. Следующее за целым числом есть целое число; к этому следовало бы прибавить: всякое целое число имеет следующее за ним число.

4. Два целых числа равны, если равны следующие за ними числа.

Пятая аксиома есть принцип полной индукции.

Кутюра смотрит на эти аксиомы как на скрытые определения; они содержат выраженные при помощи постулатов определения нуля, целого числа и «следующего числа».

Но, как мы видели, для того чтобы основанное на постулатах определение могло быть принято, необходимо установить, что оно не заключает противоречия.

Имеем ли мы дело здесь с таким именно случаем? Нисколько.

Доказательства этого нельзя дать с помощью примера. Нельзя выбрать часть всех целых чисел, например первые три числа, и доказать, что они удовлетворяют определению.

Если я возьму ряд 0, 1, 2, то увижу, что он удовлетворяет аксиомам 1, 2, 4, 5. Но, для того чтобы он удовлетворял третьей аксиоме, необходимо еще, чтобы 3 было целым числом, следовательно, чтобы ряд 1, 2, 3 удовлетворял всем аксиомам. При проверке окажется, что ряд 0, 1, 2, 3 удовлетворяет аксиомам 2, 4, 5, но третья аксиома требует, сверх того, чтобы 4 было целым числом и чтобы ряд 0, 1, 2, 3, 4 удовлетворял всем аксиомам, и т. д.

Нет, следовательно, возможности доказать аксиомы для нескольких целых чисел, не доказывая их для всех. Приходится отказаться от доказательства путем примера.

Остается собрать все выводы из наших аксиом и рассмотреть, не заключают ли они в себе противоречия. Если бы число этих выводов было конечное, то это было бы легко сделать; но число выводов бесконечно велико, они охватывают всю математику или по крайней мере всю арифметику. Что же делать? Быть может, повторить рассуждение, указанное в разделе III.

Но мы уже сказали, что это рассуждение основано на полной индукции, а между тем дело идет именно о том, чтобы оправдать принцип полной индукции.

VI. Логика Гильберта

Я перехожу теперь к тому капитальному труду Гильберта, о котором последний сделал сообщение на Математическом конгрессе в Гейдельберге. Французский перевод этого труда, сделанный Пьером Бутру, появился в «Математическом образовании»; английский перевод, сделанный Халстедом, появился в «The Monist». В этом труде, изобилующем самыми глубокими мыслями, автор преследует такую же цель, как и Рассел, но во многих случаях отклоняется от своего предшественника.

«Если мы присмотримся ближе, – говорит он, – то мы заметим, что логические принципы, в той форме, в какой их обыкновенно представляют, уже включают в себя известные арифметические понятия, как, например, понятие совокупности, а в некоторой мере и понятие о числе. Таким образом, мы находимся как бы в заколдованном круге, и вот почему, во избежание всякого парадокса, мне кажется необходимым развивать одновременно логику и принципы арифметики».

Как мы видели выше, то, что Гильберт говорит о принципах логики в той форме, в какой их себе обыкновенно представляют, одинаково приложимо и к логике Рассела. Для Рассела логика предшествует арифметике; для Гильберта они «одновременны». Мы встретимся ниже с другими, более глубокими различиями, но мы будем их отмечать по мере того, как они перед нами предстанут; я предпочитаю следить шаг за шагом за развитием мысли Гильберта и цитировать текстуально наиболее важные места его работы.