Чтобы установить, что постулаты не содержат в себе противоречия, нужно рассмотреть все предложения, которые могут быть выведены из данных постулатов как посылок, и показать, что среди этих предложений нет двух, противоречащих друг другу. Если число этих предложений конечное, то прямая проверка возможна. Но такой случай и встречается редко, и интереса не представляет.
Если же число этих предложений оказывается неограниченным, то прямая проверка уже невозможна. Тогда необходимо обратиться к таким способам доказательства, в которых вообще нельзя обойтись без принципа полной индукции, т. е. того принципа, который именно и надлежит проверить.
Мы указали на одно условие, которому логики должны были удовлетворить, и мы увидим ниже, что они ему не удовлетворили.
Есть еще другое условие. Если мы даем определение, то мы делаем это для того, чтобы им пользоваться.
В пределах некоторого рассуждения, например, мы неоднократно встречаемся с определяемым словом. Возникает вопрос: вправе ли мы в отношении к предмету, который мы в этом рассуждении называем нашим термином, утверждать тот постулат, который послужил для его определения? Очевидно, вправе, если термин сохранил свой смысл, если мы неявно (implicite) не приписали ему другого значения. Но иногда такое изменение смысла имеет место и при этом чаще всего остается незамеченным. Необходимо убедиться, каким путем это слово проникло в наше рассуждение, не вошло ли оно в другом определении, отличающемся от того, которое было формулировано первоначально.
Это затруднение встречается во всех приложениях математического знания. Математическое понятие получило вполне чистое и строгое определение, которое не возбуждает никаких колебаний в чистой математике. Но, когда мы его применяем, например, к физическим наукам, тут мы уже имеем дело не с этим чистым понятием, но с конкретным предметом, который зачастую является лишь грубым образом этого понятия. Сказать, что этот предмет удовлетворяет, хотя бы приблизительно, определению, это значит высказать новую истину, которая может быть подтверждена только опытом и которая уже не имеет характера условного постулата.
Но то же затруднение встречается и в пределах чистой математики.
Вы даете тонкое определение числа. Но, однажды дав его, вы о нем больше не думаете, ибо в действительности не из этого определения вы узнали, что такое число, а вам это уже давно было известно; и когда в дальнейшем вы употребляете слово «число», вы приписываете ему такое же значение, какое ему дает первый встречный. Чтобы узнать, каково это значение и остается ли оно одним и тем же в той или другой фразе, необходимо проследить, что заставило вас заговорить о числе и ввести это слово в обе фразы. Я не буду больше здесь по этому поводу распространяться, так как нам еще представится случай вернуться к этому вопросу.
Итак, вот слово, которому мы явно (explicite) дали некоторое определение
Мы увидим ниже, что логики столь же мало удовлетворили второму условию, сколько первому.
Определения числа чрезвычайно многочисленны и разнообразны; я отказываюсь даже перечислить имена авторов, давших эти определения. В этом нет ничего удивительного. Если бы одно из них было удовлетворительно, не было бы нужды в прочих. Если всякий новый философ, занимавшийся этим вопросом, считал необходимым изобрести другое определение, то это потому, что определения предшественников его не удовлетворяли, а не удовлетворяли они его потому, что он усматривал в них petitio principii.
Когда я читал труды, посвященные этой проблеме, я всегда испытывал чувство беспокойства; я ожидал, что натолкнусь на petitio principii, и если не встречал этой логической ошибки с самого начала, то всегда опасался, что просмотрел ее.
И это потому, что невозможно дать определение, не выражая его при помощи фразы; с другой стороны, трудно сказать фразу, не вводя в нее слова «число», или слова «несколько», или, наконец, какого-либо слова во множественном числе. И вот уже готова наклонная плоскость; в каждое мгновение мы рискуем впасть в petitio principii.
В дальнейшем я остановлюсь только на тех определениях которых petitio principii наиболее искусно скрыто.
Символический язык, который создал Пеано, играет большую роль в новых исследованиях. Этот язык может оказать некоторые услуги, но мне кажется, что Кутюра приписывает ему такое преувеличенное значение, которое удивило бы и самого Пеано.
Существенным элементом в этом языке являются определенные алгебраические знаки, представляющие собой различные союзы: «если», «и», «или», «следовательно». Возможно, что эти знаки и удобны, но призваны ли они обновить всю философию – это совершенно другой вопрос. Трудно допустить, чтобы слово «если», изображенное при помощи знака ⊃, приобрело особенное свойство, которого оно не имело раньше.
Это изобретение Пеано названо было сначала пасиграфией, т. е. искусством писать математические трактаты, не употребляя ни одного слова из житейского словаря. Это название очень точно определяет и меру важности самого искусства. Но позже изобретению Пеано было предписано более высокое достоинство, и ему дали название логистики. Последнее слово, кажется, употребляется в военных школах для обозначения искусства квартирмейстера, искусства передвижения и распределения войск; но здесь нет никакого основания опасаться смешения понятий, и сразу видно, что новое слово выражает намерение революционизировать логику.
Применение нового метода можно видеть в математическом мемуаре Бурали-Форти, озаглавленном: «Вопрос о трансфинитных числах» и помещенном в XI томе «Rendiconti del Circolo Matematico di Palermo».
Я должен прежде всего сказать, что этот мемуар чрезвычайно интересен, и потому именно беру его в качестве примера, что он является важнейшим из всех трудов, написанных на новом языке. К тому же и люди непосвященные легко могут его читать благодаря имеющемуся в нем междустрочному итальянскому переводу.
Важность этого мемуара заключается в том, что в нем дан первый пример тех антиномий, которые встречаются в изучении трансфинитных чисел и которые на протяжении нескольких лет приводили в отчаяние математиков. Цель настоящего мемуара, говорит Бурали-Форти, это показать, что могут быть два трансфинитных числа (порядковых)