Я принимаю это для второй истины, но не принимаю для двух других. Объясню причину такой кажущейся непоследовательности.
Мы видели прежде всего, что определение приемлемо лишь в случае, если установлено, что оно не заключает в себе противоречия. Мы доказали также, что такое доказательство невозможно для первого определения; для второго, наоборот, Гильберт дал полное доказательство.
Что же касается третьего определения, то оно, очевидно, не заключает противоречия; но значит ли это, что определение, как это требовалось бы, с несомненностью свидетельствует о существовании определенного предмета? Мы выходим здесь из области математических наук и вступаем в область физических наук. Слово «существование» не имеет уже того смысла, что раньше, оно не обозначает отсутствия противоречия, а обозначает объективное существование.
Вот уже первое основание для различия, которое я делаю между вышеприведенными тремя случаями. Есть еще другое основание. Эти три понятия находят последующие применения; имеют ли эти понятия в применениях то значение, которое установлено этими тремя постулатами?
Возможные применения принципа индукции бесчисленны. Возьмем для примера одно из указанных нами выше применений, где мы стремились установить, что некоторая совокупность аксиом не может вести к противоречию. Для этого следует рассмотреть один из рядов силлогизмов, которые можно построить, исходя из этих аксиом как посылок.
Когда мы закончили
Приняв это, что делаем мы дальше? Мы показываем, что если нет противоречия с
Оба определения не тождественны; они эквивалентны, без сомнения, но они таковы в силу априорного синтетического суждения: нельзя прийти от одного к другому путем чисто логических операций. Мы не вправе, следовательно, принять второе определение, раз мы ввели целое число, следуя такому пути, который предполагает первое определение.
Посмотрим, напротив, как обстоит дело с прямой линией. Я так часто уже говорил об этом, что не решаюсь снова повторять то же самое.
Мы не имеем здесь, как это было в предыдущем случае, двух эквивалентных определений, логически друг к другу несводимых. Мы имеем только одно определение, выраженное словами. Могут сказать, что мы имеем еще другое определение, которое мы чувствуем, но не можем выразить, потому что мы имеем интуицию прямой линии, или потому, что мы представляем себе прямую линию. Но, прежде всего, мы не можем представить себе этой линии в геометрическом пространстве, а можем представить лишь в пространстве, имеющемся в нашем представлении; и затем мы легко можем представить себе объекты, которые обладают всеми другими свойствами прямой линии, кроме того свойства, которое удовлетворяет постулату Евклида. Эти объекты суть «неевклидовы прямые», которые с известной точки зрения отнюдь не являются чем-то, лишенным смысла, но представляют собой окружности (настоящие окружности в настоящем пространстве), ортогональные к определенной сфере. Если из этих объектов, которые мы также можем себе представить, мы считаем прямыми первые, т. е. евклидовы прямые, а не последние, т. е. неевклидовы прямые, то это обусловливается определением.
Если мы, наконец, обратимся к третьему примеру, к определению фосфора, то мы увидим, что истинное определение будет таково: фосфор – это кусок вещества, который я вижу вот в этом флаконе.
Остановившись уже на этом примере, скажу еще несколько слов. Относительно истины, касающейся фосфора, я выше сказал: «это предложение есть настоящий физический закон, доступный проверке, так как оно обозначает: все тела, которые обладают всеми прочими свойствами фосфора, помимо точки его плавления, плавятся, как и фосфор, при 44°». На это мне ответили: «нет, этот закон не может быть проверен, потому что, если бы после проверки оказалось, что два тела, похожие на фосфор, плавятся одно при 44°, а другое при 50°, то всегда можно было бы сказать, что, кроме точки плавления, наверное, имеется еще и другое неизвестное свойство, благодаря которому эти тела друг от друга отличаются».
Это было не совсем то, что я хотел сказать. Я должен был бы написать: все тела, которые обладают такими-то и такими-то свойствами в конечном числе (а именно теми свойствами фосфора, которые перечислены в руководствах по химии, за исключением точки плавления), плавятся при 44°.
Чтобы сделать более очевидной разницу между примером с прямой линией и примером с фосфором, сделаем еще одно замечание. Прямая линия имеет в природе несколько более или менее несовершенных образов, между которыми главные суть световой луч и ось вращения твердого тела. Я допускаю, что каким-нибудь образом было бы установлено, что световой луч не удовлетворяет постулату Евклида (т. е. было бы, например, доказано, что звезда имеет отрицательный параллакс), что сделаем мы дальше? Заключим ли мы отсюда, что прямая, будучи по определению траекторией света, не удовлетворяет постулату или, наоборот, что раз прямая по определению удовлетворяет постулату, то световой луч не представляет собой прямой линии?
Конечно, мы свободны в выборе того или другого определения и, следовательно, того или иного заключения. Но принять первое заключение было бы нелепо, потому что световой луч удовлетворяет лишь несовершенным образом, вероятно, не только постулату Евклида, но и другим свойствам прямой линии; если он отклоняется от евклидовой прямой, то он также отклоняется и от оси вращения твердых тел, которая является другим несовершенным образом прямой линии; и, наконец, он, без сомнения, подвержен изменениям: будучи прямым вчера, он перестает быть таковым завтра, если какое-нибудь физическое условие изменилось.
Предположим, что было бы найдено, что фосфор плавится не при 44°, а при 43,9°. Заключим ли мы отсюда, что это новое тело, которое мы назвали фосфором, не есть настоящий фосфор, ибо последний, согласно определению, есть тело, которое плавится при 44°, или, напротив, мы заключим, что фосфор плавится при 43,9°?
В этом случае мы также свободны в выборе того или другого определения, а следовательно, того или другого заключения. Но было бы нелепо принять первое заключение, так как нельзя же менять наименование тела каждый раз, когда удается определить лишний десятичный знак в его температуре плавления.
В итоге Рассел и Гильберт сделали большие усилия. Тот и другой написали книги, изобилующие оригинальными, глубокими и часто очень правильными взглядами. Эти две книги дают нам большой материал для размышления; из них мы можем многому научиться. Некоторые и даже многие из выводов, к которым приходят авторы, прочны и будут жить.
Но, очевидно, было бы неправильно сказать, что они окончательно разрешили спор между Кантом и Лейбницем и разрушили кантову теорию математики. Я не знаю, стоят ли они сами на этой точке зрения, но если они это думают, то они ошибаются.
Глава V. Последние усилия логистиков