Дарвинизм в XXI веке

22
18
20
22
24
26
28
30

Такая картина напоминала не постепенное преобразование одних форм в другие, а следы серии катастроф, полностью уничтожавших все живое, — после которых, однако, жизнь всякий раз появлялась заново, но уже совсем в других формах. Именно это и предположил Кювье, выпустив в 1812 году книгу «Рассуждение о переворотах на поверхности Земли»: смена фаун объясняется тем, что в прошлом на Землю время от времени обрушивались некие чудовищные катастрофы, полностью менявшие ландшафт огромных участков ее поверхности и сметавшие всех ее обитателей. После каждой такой катастрофы планета заселялась вновь, но уже совсем другими организмами. Вопрос о том, откуда всякий раз брались эти «другие организмы», Кювье подробно не обсуждал, но предполагал, что это были существа, обитавшие в дальних местах, не затронутых катастрофой. Как бы то ни было, по его мнению, этот вопрос в то время был недоступен для научного исследования, а значит, нечего о нем и говорить[147].

Нам сейчас нет нужды вдаваться в подробности этого хорошо известного и многократно описанного в литературе сюжета. Отметим только одно важное для понимания дальнейшего обстоятельство: катастрофизм (как стали называть взгляды Кювье и его сторонников) был альтернативой эволюционизму, причем не какой-то конкретной теории (например, Ламарка), а эволюционным представлениям как таковым. Он был попыткой объяснить известные палеонтологии факты, не прибегая к идее эволюции в каком бы то ни было ее варианте.

Огромный авторитет Кювье и убедительность его аргументов сделали свое дело: его теория катастроф господствовала в палеонтологии на протяжении нескольких десятилетий. Однако чем дальше, тем хуже согласовывались с ней новые факты (объем которых быстро рос по мере изучения геологии разных районов Земли), да и научная мода в естественной истории постепенно менялась: набирал популярность актуализм Чарлза Лайеля — взгляд, согласно которому все факторы, формировавшие геологический облик Земли в прошлом, действуют и ныне. Накопившееся напряжение разрядилось в 1859 году выходом «Происхождения видов»: в палеонтологии, как и во всей биологии, полностью возобладал эволюционизм, а катастрофизм был списан в архив истории науки и, казалось бы, прочно забыт.

Он и в самом деле был забыт настолько прочно, что, когда спустя 120 лет вернулся в научный обиход, многие ученые ХХ века его не узнали. Вероятно, и сам основоположник современного катастрофизма — американский физик-атомщик, лауреат Нобелевской премии Луис Альварес — искренне не подозревал, что предлагаемая им гипотеза есть не что иное, как реинкарнация старой доброй теории Кювье.

Все началось всего лишь с того, что в 1980 году Альварес обратил внимание на так называемую глобальную иридиевую аномалию. Дело в том, что в самых разных районах мира на границе меловых и палеогеновых отложений возрастом около 67 млн лет встречается прослой глин с необычно высоким содержанием редкого металла иридия. Что само по себе странно: иридий — металл платиновой группы, хорошо растворимый в железе, поэтому основная часть имеющегося на Земле иридия сейчас находится в железном ядре планеты. Откуда же он вдруг взялся на поверхности, да еще сразу по всей Земле? С другой стороны, иридиевая «метка» более или менее точно совпадает с резкими изменениями ископаемых морских фаун (по которым и проводят границу между мезозойскими и кайнозойскими отложениями). Соблазнительно было предположить, что между этими фактами есть причинная связь.

Альварес так и сделал, сочтя источником иридия, выпавшего на поверхность планеты 67 млн лет назад, железный астероид (каковые, по мнению астрономов, представляют собой осколки планетных ядер), врезавшийся в Землю и оставивший после себя метеоритный кратер Чиксулуб (открытый как раз незадолго до публикации Альвареса) — вмятину диаметром почти 200 километров, лежащую частично на полуострове Юкатан, а большей частью на прилегающем к нему континентальном шельфе. Рассчитав по размеру кратера примерную энергию столкновения, Альварес и его соавторы (среди которых был и его сын — геолог Уолтер Альварес) предложили реконструкцию событий, основанную на популярном в то время сценарии «ядерной зимы»: удар астероида взметнул в верхние слои атмосферы огромное количество пыли (и, возможно, сажи от начавшихся после него лесных пожаров). Пыль и копоть закрыли поверхность планеты от солнечных лучей, и на Земле на несколько лет воцарилась зима, погубившая теплолюбивую флору и фауну мезозоя. В том числе самых известных широкой публике древних животных — динозавров, чье окончательное вымирание также приходится примерно на это время.

«Астероидная» теория быстро приобрела популярность — поначалу в основном среди широкой публики, а также тех ученых, чьей непосредственной специальностью не является палеонтология[148]. Она растиражирована во множестве книг и фильмов (как научно-популярных, так и художественных), отражена в экспозициях солидных музеев и того и гляди войдет в школьные учебники. Но что, пожалуй, еще важнее — она породила настоящую моду на подобные объяснения крупных (а затем и вообще любых) вымираний. Правда, столь удачных совпадений особо сильных космических ударов с массовыми вымираниями (а и тех, и других в истории нашей планеты было не так уж мало) больше обнаружить не удалось. Но невелика беда: поблизости от любого заметного палеонтологического события всегда найдется какая-нибудь катастрофа — если не падение астероида, то необычайно мощные извержения вулканов, инверсия магнитного поля Земли, гигантские выбросы нефти и газа (с их последующим воспламенением или без такового), резкий всплеск мощности космических лучей, порожденный близким взрывом сверхновой, и т. д. На худой конец, если уж совсем ничего подходящего не находится, можно придумать что-нибудь, что не оставляет однозначных следов в геологической летописи, — например, резкое изменение светимости Солнца. Дело дошло до того, что, как мы увидим в главе 21, даже в качестве причин исчезновения одного-единственного вида на полном серьезе рассматривается какой-нибудь импакт (это обобщающее понятие для любых сильных разовых воздействий абиотических факторов).

Выше уже говорилось, что первоначально импактные теории завоевали популярность за пределами профессионального сообщества палеонтологов — среди ученых других специальностей, а также у популяризаторов и журналистов. Однако примерно в конце 1990-х — начале 2000-х годов они начали проникать и в палеонтологию и довольно быстро заняли там доминирующее положение. (Нетрудно представить, как это произошло: те, кто в 1980-х студентом-младшекурсником или даже подростком попал под обаяние этого наглядного, красочного и остродраматичного сценария и, возможно, именно под его влиянием пошел в палеонтологи, к рубежу веков доросли до руководителей экспедиций, завлабов, редакторов и членов редколлегий научных журналов и т. д.) Собственно эволюционные интерпретации крупных событий в истории жизни на Земле оказались оттеснены на обочину, а основные баталии развернулись между сторонниками различных импактных версий, азартно споривших, какая именно катастрофа (в частности, падение астероида или гигантские извержения) вызвала то или иное крупное вымирание. Поскольку в этих спорах каждая сторона приводила факты и рассуждения, не столько подтверждавшие ее собственный сценарий, сколько выявлявшие несуразности и нестыковки в сценарии альтернативном, следить за этой полемикой было довольно интересно.

Разумеется, сторонники импактных гипотез не отрицают ни эволюцию как таковую, ни дарвиновские механизмы: после того, как тот или иной импакт уничтожил старую флору и фауну, как-то же должна сформироваться новая. Не рассматривают они и гипотезу многократного творения. Тем не менее эволюция в их построениях предстает лишь пассивной реакцией биосферы на достаточно сильные внешние воздействия. Сама по себе, без таких стимулов эволюция способна только на отдельные акты видообразования — но не на радикальные изменения. Причем к последним относятся не только вымирания крупных и разнообразных групп живых организмов, но и появление новых таких групп — мода подыскивать импактные причины распространяется и на становление крупных таксонов и прогрессивное усложнение организации. То есть новомодный импактный подход роднит со старым почтенным катастрофизмом не только пристрастие к мировым катаклизмам, но и отношение к эволюции: оба они представляют собой попытку объяснить историю жизни, по возможности обходясь без эволюционных представлений.

Однако то, что нынешние импактные теории — лишь модернизированная версия катастрофизма Кювье, еще не означает, что они неверны. История науки знает не так уж мало случаев, когда теории, в свое время категорически (и порой вполне обоснованно) отвергнутые научным сообществом, впоследствии оказывались верными — или, по крайней мере, не менее близкими к истине, чем альтернативные им взгляды. Мы сегодня знаем, что химические элементы в принципе могут превращаться друг в друга (как полагали алхимики и с отрицания чего начиналась некогда научная химия), что континенты движутся и т. д. Может, и неокатастрофизм честно заслужил свою нынешнюю популярность? Может, такой взгляд позволяет лучше понять суть того, что происходило десятки или сотни миллионов лет назад? И самое главное — может, он лучше согласуется с известными фактами?

Для ответа на эти вопросы лучше всего рассмотреть самую старую, знаменитую и хорошо проработанную из современных импактных теорий — «астероидную» теорию мел-палеогенового вымирания.

Уже при первом своем появлении эта теория порождала целый ряд вопросов. В самом деле, солнечный свет обеспечивает пищей не только динозавров и аммонитов, но и почти всех обитателей Земли. Как же они пережили глобальный мрак и холод? Почему, скажем, не вымерли мезозойские млекопитающие — хотя теплокровность при скромных размерах тела делала их куда более зависимыми от обилия пищи, чем динозавры? Почему уцелели ближайшие родственники динозавров — птицы и чуть более дальняя родня — крокодилы? Казалось бы, наиболее уязвимыми для «астероидной зимы» должны быть зеленые растения, а среди животных — мелкие существа вроде насекомых. Но как раз растения и насекомые практически «не заметили» катастрофы: позднемеловые флора и энтомофауна почти не отличаются от раннепалеогеновых. В целом ряде геологических свит (непрерывных последовательностей отложений) мел-палеогеновую границу найти вообще не удается: и выше, и ниже «иридиевой метки» лежат окаменелые останки одних и тех же видов растений и членистоногих.

За четыре десятилетия своего существования астероидная теория так и не нашла убедительных ответов на эти вопросы. А тем временем конкретные исследования добавляли к ним все новые. Выяснилось, что крупные астероиды падали на Землю неоднократно. Так, например, всего около 2,5 млн лет назад на шельф между Южной Америкой и Антарктидой упал Эльтанинский метеорит, вполне сопоставимый по размеру с Чиксулубским. Однако в результате этого катаклизма никаких массовых вымираний не было, да и вообще не удалось заметить никаких эволюционных последствий. (Группа ученых, исследовавших этот вопрос, приводит этот вывод без каких-либо комментариев и обсуждения — похоже, они совершенно не ожидали такого результата.) А в начале 2015 года в центральной Австралии были обнаружены следы падения астероида вдвое крупнее Чиксулубского, произошедшего, вероятно, в каменноугольном периоде — между 300 и 360 миллионами лет назад. За несколько секунд до столкновения с поверхностью планеты гигантская глыба раскололась надвое, и каждый из этих обломков оставил по кратеру около 200 километров в поперечнике — Восточную и Западную Уорбертонские депрессии. И что же? «Мы не нашли массового вымирания растений и животных, соответствующего этим ударам», — растерянно констатирует первооткрыватель метеоритной природы депрессий австралийский геолог Эндрю Гликсон.

И наоборот: ни одно массовое вымирание, кроме мел-палеогенового, не совпадает по времени с падением «крупнокалиберных» метеоритов. Хотя все эти годы такие совпадения были предметом целенаправленных и настойчивых поисков. Особенно мощные, поистине титанические усилия были предприняты для отыскания следов астероидного удара на палеозой-мезозойской границе, отмеченной самым масштабным в истории Земли вымиранием — пермо-триасовым. Однако никаких внятных результатов эти поиски так и не дали. В последние годы энтузиасты астероидной теории предлагают считать таким следом кратер на Земле Уилкса в Антарктиде, обнаруженный в результате наблюдений и измерений со спутника. Однако даже само его метеоритное происхождение пока остается лишь гипотезой — он мог возникнуть и иным путем. И в любом случае мы ничего не знаем о его возрасте: датировать структуру, находящуюся под многосотметровой толщей льда, невозможно даже приблизительно. Так что привязка появления этого кратера к пермо-триасовой границе — чистая фантазия неокатастрофистов-астероидников.

Еще одной неприятной новостью для гипотезы Альвареса стали результаты более пристального изучения ископаемых с мел-палеогеновой границы. Одна за другой появлялись находки, никак не укладывающиеся в картину астероидного апокалипсиса. Так, работы группы палеонтологов под руководством профессора Герты Келлер из Принстонского университета показали, что в непосредственной близости от места катастрофы — всего в 600 километрах от центра Чиксулубского кратера! — выше и ниже пресловутой «иридиевой метки» осадочные породы образованы одними и теми же видами фораминифер. Не вымер ни один из 52 видов этих микроскопических существ, обитавших в тех местах в конце мелового периода. А радикальные изменения в составе зоопланктона (по которым и проводят мел-палеогеновую границу) начались гораздо позже — по оценкам Келлер, примерно спустя 300 тысяч лет после падения метеорита. Никакая «астероидная зима» не могла продолжаться столько времени.

Разумеется, группу Келлер тут же обвинили в неточности датировок — просто на том основании, что никакой метод не позволяет датировать события такой давности (напомним: речь идет о том, что происходило 65–67 миллионов лет назад) с точностью до 300 тысяч лет. Подобную критику трудно принять всерьез: какие бы методы абсолютной датировки ни применяли принстонские палеонтологи, каковы бы ни были возможности и погрешности этих методов, это никак не отменяет толстого слоя чисто мезозойских отложений выше иридиевой аномалии. Обстоятельство, заворожившее некогда Альвареса, — одновременное и геологически мгновенное выпадение иридия по всей планете — внезапно обернулось против его гипотезы!

Другой аргумент в защиту астероидной версии состоял в предположении, что, мол, удар астероида взметнул со дна более ранние отложения, которые затем переотложились уже поверх иридиевого слоя. Поверить в такой ход событий тоже трудновато: ведь иридий выпал тоже не мгновенно. Вещество астероида должно было быть измельчено буквально до атомов — только в таком виде оно могло быть вынесено в верхние слои атмосферы, разнесено воздушными потоками и затем постепенно осаждено по всей поверхности планеты. При этом оседающим атомам иридия пришлось преодолеть всю толщу атмосферы, а тем, что выпадали над океаном, — еще и водную толщу. Между тем скорость оседания взвесей зависит от размера оседающих частиц: чем мельче частицы, тем дольше они будут оседать. Как ни малы микроскопические раковинки фораминифер, они все же на много порядков больше атомов иридия — и стало быть, последние никак не могли осесть раньше[149].

А тем, кому рассуждения о скорости оседания кажутся абстрактными и недостаточно убедительными, геологическая летопись преподнесла совсем уж наглядные сюрпризы. Вскоре после публикации данных группы Келлер (и в самый разгар полемики о возможности переотложения изученных ею окаменелостей) появилась статья Джеймса Фассетта и Ларри Химена из университета Альберты о датировании останков вполне сухопутных динозавров, найденных ранее в местечке Охо-Аламо на границе штатов Колорадо и Нью-Мексико. Некоторые кости оказались моложе «Чиксулубского события» на 500–700 тысяч лет. Предположить же, что массивные кости 20-ме-тровых ящеров полмиллиона лет болтались в воздухе, вряд ли рискнет даже самый горячий сторонник астероидной теории[150].

Разумеется, тут же раздались голоса, что, мол, да, какие-то реликтовые популяции поздних динозавров и других жертв катастрофы могли еще некоторое время теплиться, но они-де уже не имели сил для восстановления. (Хотя если подумать — какие особенные «силы» нужны популяции, чтобы восстановить прежнюю численность, если все неприятности уже позади?) Но дело в том, что строгое количественное изучение видового разнообразия динозавров показывает: их вымирание не только не кончилось, но и не началось с падением Чиксулубского метеорита. Ко времени масштабного фейерверка с иридием сокращение видового разнообразия (то есть вымирание) динозавров шло уже давно — фактически всю вторую половину верхнемеловой эпохи, то есть около 15 миллионов лет. («Чтоб нам столько жить, сколько они вымирали!» — шутит палеонтолог Екатерина Тесакова.) Сегодня даже палеонтологи-неокатастрофисты (еще несколько лет назад утверждавшие, что накануне удара астероида динозавры якобы переживали расцвет) сквозь зубы признают: да, вымирание шло задолго до Чиксу-луба и появление новых видов не восполняло потери ранее существовавших.

Каковы бы ни были реальные причины этого вымирания (о них — точнее, о более убедительных гипотезах на этот счет — мы будем более подробно говорить в главе 14), получается, что космический катаклизм не запустил этот процесс, не ускорил его и даже не добил тех немногих, кто еще держался. В чем же в таком случае состоит его роль? Уж не аналогична ли она роли того самого топора, из которого персонажи русской народной сказки варили кашу?