Беседы о третьем элементе

22
18
20
22
24
26
28
30

Всегда ли дискретность означает наличие информации и всегда ли информация означает дискретность?

Что меняется в вещах при записи или стирании информации?

Куда девается информация из сгоревшей книги?

Является ли информация реальной физической сущностью?

6. Белое и черное

Темная Сторона или преддверие духа, начинается с момента, когда рецепторная клетка сетчатки считала информацию с внешнего сигнала и теперь, чтобы выполнить свое предназначение и завершить акт ощущения, должна передать ее дальше, в центры восприятия. Сознание по своей природе нематериально, поэтому именно нематериальную часть внешнего физического сигнала нужно отделить, закодировать и передать в сообщении.

При наличии светового стимула рецепторные нейроны (давайте здесь называть их рецепторами) передают сообщение на второй слой нервных клеток сетчатки, составленный из горизонтальных, и биполярных нейронов. Связи между рецепторами (палочками и колбочками) и биполярными нейронами (биполярами) крайне сложны. Каждая палочка связана с многими биполярами, а каждый биполяр с многими палочками образуя запутанную нейронную сеть, а чтобы какой-нибудь умник не смог проследить их связи под микроскопом, между рецепторами и биполярами имеется еще слой горизонтальных клеток, где следы теряются. На выходе из биполяров и входе в ганглиальные клетки происходит то же самое, но там многочисленные косвенные и обходные связи проходят через амакриновые клетки.

Нейронная сеть сетчатки[12]

В результате каждый ганглиарный нейрон может получать сигналы в среднем от 125 палочкек или 6–7 колбочек, расположенных на участке сетчатки, имеющем форму маленькой окружности и образующих его рецептивное поле. Когда стали изучать рецептивные поля ганглиарных нейронов, выяснилось, что это не просто небольшой чувствительный кружок на сетчатке. «Первые исследователи светового ощущения были крайне удивлены, когда, направляя в глаз ярчайший световой импульс от магниевой вспышки, получали в лучшем случае слабую реакцию ганглиарных нейронов, а в худшем — вообще никакой, а потом получали сильнейшую реакцию от очень маленького светового пятнышка».[13] Оказалось, что ганглиарные клетки почти не реагируют на засветку всего рецепторного поля. Но если осветить рецептивное поле частично, иногда центр, иногда периферию, то ганглиарный нейрон формирует мощный выходной сигнал.

Дальнейшее исследование показало, что ганглиарные нейроны бывают двух типов. Одни из них реагируют на засветку центральной части рецептивного поля и перестают реагировать, если засвечена также периферическая часть, это клетки с «On» центром. Другие ведут себя полностью противоположным образом, реагируют на засветку периферической части рецептивного поля и тормозятся засветкой центральной части, это клетки с «Off» центром. Причем деление на «On» и «Off» клетки начинается уже с биполяров и от них наследуется ганглиарными нейронами.

Биполяры не доверяют рецептору, не опросив его соседей, и у этого есть свои веские причины. Дело в том, что на Светлой стороне Свет и Тьма ведут с нами довольно хитрую игру, в которой Свет прикидывается Тьмой, а Тьма — Светом. Автор книги «Глаз, Мозг, Зрение» Дэвид Хьюбел описал любопытный эксперимент. Он нашел газету с большими черными буквами и измерил яркость света, отраженного от белого и черного участков бумаги в комнате и на солнечном освещении. Ниже, в таблице, перед вами результат.

В обоих случаях освещенность снаружи, на солнечном свете, оказалась в 20 раз сильнее, чем в комнате, так что, на первый взгляд, с цифрами все в полном порядке. Но заметьте любопытную подробность: черная бумага при свете дня в два раза ярче, чем белая бумага в комнате. Получатся, что если полагаться только на силу светового стимула, то черное может оказаться в два раза ярче белого. Это означает, что невозможно определить природу поверхности, не сравнив ее с фоном и контекстом.

Если в центр поля зрения ганглиарного нейрона с «On» центром попала светлая точка, он не может на нее корректно отреагировать, не сравнив с яркостью периферии, потому что может оказаться, что эта светлая точка, на самом деле, темна относительно окружения. У ганглиарных нейронов с «Off» центром все происходит наоборот: они не могут среагировать на темную точку, не сравнив ее с соседними и не выяснив, темна ли она по сравнению с фоном.

Таким образом, у нас в сетчатке имеется четкое деление на два типа ганглиарных нейронов: одни приспособлены для того, чтобы видеть «Белое», а вторые — чтобы видеть «Черное». Там, где нейроны белого находятся рядом с нейронами черного, пролегает контур, и получается, что он — это единственное, чему мы можем доверять.

Кроме «Черного» и «Белого», большие ганглиарные нейроны черно-белого зрения (магноцеллюляры) способны различать также движение и его направление, которое определяется в зависимости от стороны, на которой резко изменилась засветка рецептивного поля. Каждый нейрон может определять движение с разрешением в 180 градусов, то есть отличать друг от друга два типа движения — с одной стороны и с другой, скажем, справа или слева. Но такие нейроны объединяются в группы, где у всех ось различимости повернута по-разному, и эта группа различает угол движения с 15 различных направлений. Для простоты изложения в дальнейшем будем считать, что магноцеллюляры передают только оттенки «Черного» и «Белого», но для полноты картины я упомянул и об этом.

То, что при изменении освещенности в 20 раз черное становится белым и наоборот, поначалу должно было сводить с ума нашего далекого первичноводного челюстноротого предка, выплывшего 450 миллионов лет назад, в далеком Ордовике на вечернюю прогулку. Каждый пиксель изображения надо было сверять с соседними, чтобы понять в сумраке, можно ли скушать ту черненькую штучку, которая белеет во мраке на камушке, или укусить ее и посмотреть, что будет, или лучше сразу убежать. Причем решать надо быстро, на уровне инстинктов и интуиции. Сложная и чувствительная нейронная сеть, построенная на палочковых рецепторах и иерархии нейронных слоев, позволила ему оперативно и надежно сравнивать относительную освещенность смежных точек изображения и находить контуры вещей, а также моментально определять движение, чтобы вовремя развернуть свою новенькую, блестящую челюсть и цапнуть.

Многослойная нейронная сеть устроена так, что каждый ганглиарный нейрон определяет, видит ли он предназначенное («Белое» или «Черное»), вычисляя баланс возбуждения и торможения элементов своего рецептивного поля. Каждый рецептор может посылать сигналы многим ганглиарным нейронам и каждый ганглиарный нейрон связан со многими рецепторами. Рецептивные поля перекрываются между собой и один и тот же рецептор может возбуждать один ганглиарный нейрон и тормозить другой, в зависимости от своей роли в поле соответствующего нейрона. Характер сообщения определяется не самими нейронами, а связями между ними, то есть синапсами, которые могут быть возбуждающими, а могут — тормозящими.

В «On» клетках засвеченные рецепторы центра рецептивного поля вызывают возбуждение, а засвеченные рецепторы периферии — торможение, и клетка, подобно весам, взвешивает оба воздействия. Если возбуждение центра поля окажется сильнее торможения периферии и разница превысит пороговое значение, то «On» нейрон сообщит, что видит «Белое», а частота импульсов скажет, насколько белый цвет силен. То же самое, только наоборот, происходит с «Off» клетками, в которых рецепторы центра вызывают торможение, а рецепторы периферии — возбуждение. Если перевешивает торможение центра, то нейрон сообщит, что видит «Черное» и даст оценку силе черного цвета.

Система зрения, построенная на палочках, — это чрезвычайно чувствительный и высокотехнологичный прибор ночного видения, основанный на нейросетевых технологиях. Сначала, миллиард лет назад, эволюции пришлось изрядно попотеть, чтобы создать для древних простейших вещество родопсин, чувствительное к той широкой области спектра электромагнитного излучения, которую мы называем видимым светом. Затем в сетчатке рыб были опробованы многослойные нейросети, а в крышу их среднего мозга (Тектум) было добавлено центральное ассоциативное устройство, объединяющее сигналы от разных сенсорных систем с моторикой и создающее единое восприятие образа и действия. И это был, воистину, грандиозный успех Творца!

Мы уже обсуждали аналоговый и дискретный виды сигналов и выяснили следующее. Первый предоставляет нам бесконечное количество информации, но — крайне низкого качества из-за влияния шумов и ослабевания сигнала. Второй, хотя и несет на себе лишь малую крупинку информации, дает нам некую точность, которую можно превратить в сообщение, переслать и перевести в принятие решений.