Наблюдение за маятником может показаться странным времяпрепровождением, особенно с учетом того, что большинство людей — и все ученые — ко времени открытия Фуко уже признали вращение Земли. Но его маятник позволял увидеть это движение в ясном и бесспорном виде. Для ученых это был прекрасный способ привнести в лекционный зал движение космоса.
Один занятный аспект движения маятника, который, судя по всему, во времена Фуко никого не обеспокоил, позже вызвал тем не менее глубокие последствия. Если установить такой маятник на Северном полюсе, то за сутки плоскость его колебаний повернется на 360°. А если поставить маятник на экваторе, он вообще не будет поворачиваться. В обоих случаях маятник в конце суток будет колебаться вдоль той же самой линии, вдоль которой колебался в начале. Но что происходит, когда маятник ставят на промежуточной широте, к примеру в Пантеоне Парижа? За сутки плоскость колебаний маятника повернется меньше чем на 360°. Так, в Пантеоне за полные сутки маятник поворачивается приблизительно на 270°.
Это странно. Если пренебречь движением Земли вокруг Солнца, которое не играет значимой роли в эксперименте Фуко, то можно сказать, что за сутки маятник, вместе с Пантеоном и городом Парижем, прошел полный круг по своей широтной линии и вернулся в исходную точку в пространстве. Но ведь теперь он раскачивается в другом направлении! По какой-то причине маятник, обойдя вокруг земного шара, ведет себя иначе, чем до этого.
Чтобы понять, как это возможно, проведем мысленный эксперимент. Представьте, что вы несете маленький маятник Фуко на подносе. Предположим для начала, что вы идете по кругу и завершаете свой путь там же, откуда начали. Если вы все время поворачиваете влево, вам будет казаться, что плоскость колебаний маятника разворачивается вправо и в конце круга маятник будет качаться вдоль той же самой линии, вдоль которой качался вначале{4}. Разумеется, сам маятник не меняет направления колебаний, это вы идете по кругу, но, поскольку вы все время поворачиваете, видимое движение маятника меняется. А теперь предположим, что вы идете вперед по прямой. В этом случае направление колебаний маятника не будет меняться, но и вы не вернетесь в начальную точку.
Теперь представьте, что вы несете маятник по большой сферической поверхности (это нетрудно, ведь мы живем именно на такой поверхности). Если вы совершите небольшую круговую прогулку в любом месте Земли, то вам покажется, что маятник у вас в руках вновь развернулся на 360°, как при прогулке по плоской поверхности, ведь небольшой по площади участок сферы можно считать приближенно плоским. Это аналогично ситуации, когда вы ставите маятник на Северном полюсе, где из-за вращения Земли маятник тоже меняет направление вращения на 360°. Вы также можете идти прямо по поверхности Земли, хотя на сфере прямой путь — это всегда часть большого круга, такого как экватор или любой другой круг, который делит земной шар ровно пополам. Маятник не будет менять направление колебаний, если вы двинетесь по большому кругу, но этот круг отличается от прямого пути на плоскости, потому что форма сферы приведет вас обратно в начальную точку даже в том случае, если вы по пути не будете никуда сворачивать.
Наконец, представим, что вы идете с маятником вдоль одной из северных широтных линий — параллелей — Земли. Ни одна из параллелей, за исключением экватора, не является большим кругом; то есть движение по ним нельзя считать прямолинейным движением на сфере. Поэтому, если вы идете с маятником вдоль широтной линии, проходящей, скажем, через парижский Пантеон, то вам, чтобы оставаться на этой линии, все время приходится чуть-чуть поворачивать влево. Вследствие этого по мере вашего движения направление качания маятника будет разворачиваться вправо. Однако, поскольку форма шара естественным образом направляет вас обратно к начальной точке, вам нет необходимости, чтобы попасть туда, поворачивать так сильно, как пришлось бы на плоской поверхности. На плоскости, чтобы вернуться в начальную точку, вам необходимо активно повернуть на 360°; на сфере, чтобы попасть в начальную точку, вы частично поворачиваете сами, а частично следуете за кривизной Земли.
Следовательно, маятник Фуко иллюстрирует собой некоторую геометрическую фазу. То есть базовая геометрия Земли позволяет маятнику вернуться в то же место, но не в том же состоянии, в каком он был до старта. С падающей кошкой происходит нечто очень похожее. В начальный момент ее тело перевернуто вверх лапами и выпрямлено, а затем она проделывает некоторое количество внутренних движений — поворотов и кручений. После того как кошка проделывает эти движения, ее тело обретает первоначальную незакрученную форму (возвращается в то же «место»), но теперь уже лапами книзу (в другом «состоянии»). Кручения и повороты кошки аналогичны движению маятника вокруг Земли, а изменение ориентации кошки аналогично изменению направления оси колебаний маятника. Математически система, демонстрирующая такие изменения, не является голономной, или демонстрирует
Существуют различные типы неголономности. В качестве еще одного примера вернемся к нашему полярному путешественнику. Зададимся вопросом: как меняется высота положения путешественника по мере его движения по маршруту? Он может, в принципе, подняться по пути на какой-нибудь холм, то есть высота его положения увеличится, но где-то дальше он обязательно спустится с холма, так что по возвращении в лагерь высота положения окажется прежней.
Предположим теперь, что он путешествует внутри многоуровневого гаража, в котором уровни соединены спиральными пандусами. Если маршрут ведет путешественника вверх по одному из спиральных пандусов, то он все время будет идти только вверх и закончит маршрут точно на этаж выше точки старта. Это еще один пример неголономности: хотя в координатах север — юг — восток — запад этот человек прошел замкнутый маршрут, в результате он оказался в другом месте — на другой высоте. Аналогично маятник в конечном итоге качается в другом направлении, а кошка приземляется в другой ориентации.
Во времена Фуко неголономность маятника, кажется, не произвела особого впечатления на исследователей; они были в восторге от возможности своими глазами наблюдать вращение Земли и стремились вывести точные математические уравнения, которые описывали бы ее движение. Только 100 с лишним лет спустя неголономность в физике получила подлинное признание и оценку, причем в совершенно ином контексте — в квантовой физике.
Почти столетие физики считали, что все сущее имеет двойственную природу — волновую природу и природу частиц; это занятное состояние, называемое корпускулярно-волновым дуализмом, привело, как мы увидим, к возникновению концепции кота Шрёдингера. Когда единичная квантовая частица, такая как электрон, заключена в замкнутое пространство, ее волновые свойства порождают определенные стабильные и относительно простые движения. Эти состояния движения, как ни парадоксально, называются
Квантовые частицы, или колеблющиеся волны, можно возбуждать и в «ящиках» более сложных форм. К примеру, волны возникают на круглой поверхности барабана, что аналогично квантовой частице, заключенной в круглый «ящик»; стационарные состояния для нее будут связаны с поверхностью барабана. Для «ящиков» простых форм, круглых или прямоугольных, мы можем математически вычислить энергии стационарных состояний; этим базовым вычислениям учат студентов-физиков.
Однако для «ящиков» более сложных форм вычисления часто не могут быть проделаны напрямую: нахождение стационарных состояний в них может оказаться очень трудным делом. В конце 1970-х гг. Майкл Берри из Университета Бристоля захотел разобраться в стационарных состояниях подобных случаев. В частности, он занимался поиском систем, в которых два или более стационарных состояния в конечном итоге имеют одинаковую энергию; такие ситуации называют
Задачей, исследованием которой занимался Берри, был случай с квантовой частицей, отражающейся от стенок треугольного «ящика», что аналогично волнам, колеблющимся на поверхности треугольного барабана{5}. Изучив стационарные состояния, возникающие во всех треугольных «ящиках», какие только можно вообразить, реально было бы найти те «ящики», в которых происходит вырождение. В контексте этой задачи случаи вырождения называются диаболическими точками — из-за их связи с фигурой в виде двойного конуса, напоминающей игрушку диаболо (а не из-за присущих им дьявольских свойств).
Форму треугольника можно охарактеризовать двумя параметрами, а именно двумя внутренними углами, которые мы обозначим
Здесь мы можем провести прямую аналогию с нашим многоуровневым гаражом. Точно так же как полярный исследователь, пройдя по пандусу, окажется на другом уровне гаража, так волны треугольника поменяют знак, если «обойти» вокруг диаболической точки: «верхняя» часть каждой волны станет «нижней», и наоборот. Ключевая разница состоит в том, что прогулка по пандусу гаража — это прогулка в реальном пространстве, тогда как «прогулка» Берри и Уилкинсона — это теоретическая прогулка по математическому конструкту. Воспользовавшись этой методикой, они нашли в своем множестве треугольников немалое число диаболических точек.
Изменение волны в данном случае верно было бы назвать
Эта топологическая фаза указывала на приближение глубокого прорывного открытия. «Момент зачатия», как называл его Берри, пришелся на весну 1983 г., когда он представил свою работу в Технологическом институте Джорджии. Берри и до этого замечал, что диаболические точки могут существовать только в случае, когда на частицу в треугольном «ящике» не действуют магнитные поля. Он продолжил мысль:
Таким образом, если к частице в треугольниках приложить слабое магнитное поле, диаболические точки должны исчезнуть. В конце лекции Рональд Фокс (в то время заведующий кафедрой физики) спросил, что происходит со сменой знака, когда включается магнитное поле.
Это был спусковой крючок, момент зачатия. Я немедленно ответил: «Полагаю, фаза изменяется на величину, отличную от π, — и тут же дал необдуманное обещание: — Я разберусь с этим сегодня и отвечу завтра». На самом деле потребовалось несколько недель, чтобы как следует разобраться в геометрической фазе{6}.