Искусство большего. Как математика создала цивилизацию

22
18
20
22
24
26
28
30

Глава 6. Комплексные числа. История электрического века

Случалось ли математическому изобретению получить более обманчивое название? Комплексные, или мнимые, числа появились из алгебры и сформировали собственную область науки – и собственную сферу влияния. Хотя они и не похожи на другие числа, они, несомненно, реальны: без них в современном мире не обходится практически ничего. Электрификация Америки, начинка мобильного телефона, звук в кинозале и треск усилителя Marshall – все перечисленное обязано своим существованием этим числам. Кремниевая долина в буквальном смысле была основана на них. И все же хорошо, что математик Чарльз Лютвидж Доджсон – более известный как Льюис Кэрролл – не понял, какую пользу они принесут, ведь иначе нам не удалось бы побывать на пресловутом безумном чаепитии у Шляпника.

Кларенс Леонидас Фендер был одним из миллионов американцев, потерявших работу в Великую депрессию, разразившуюся в 1930-х годах. Фендер получил диплом бухгалтера, окончив Фуллертонский колледж в Калифорнии, устроился в Калифорнийский дорожный департамент и так полюбил свою работу, что даже не задумывался о смене профессии. Позже он вел бухгалтерию в компании, которая торговала шинами. Лишившись и этой работы, он решил, что настало время перемен. Он вспомнил о своем детском увлечении, взял в кредит 600 долларов и открыл радиомастерскую.

Был 1938 год, и радиомастерская Фендера не только предлагала услуги по ремонту радио, но и продавала и давала в аренду собранные по собственному проекту усилители – главным образом для систем оповещения. Но важнее всего оказалась внедренная Лео Фендером инновация. Услышав о новомодных электрогитарах с дребезжащими усилителями, он взялся за проектирование и производство более удачных моделей. Никто не понимает, как он к этому пришел: похоже, он просто скопировал и приспособил под свои нужды усилительные контуры из выпущенного Американской радиовещательной корпорацией “Руководства по радиоприемникам”, содержавшего базовые инструкции по сборке радиооборудования.

Первые усилители вышли из его мастерской в 1945 году. Год спустя он начал продавать усовершенствованные модели, которые прозвали “деревяшками”, потому что их корпуса изготавливались из твердой древесины. Усилители и гитары Фендера прославились на весь мир, и место, где находилась его радиомастерская в Фуллертоне, теперь отмечено табличкой и внесено в Национальный реестр исторических мест США. Невозможно, впрочем, отрицать, что по звучанию первых усилителей Фендера было ясно, что проектировал их бухгалтер, и вскоре доморощенные инженеры-электрики принялись за совершенствование конструкции.

Одна из таких попыток привела к появлению другой памятной таблички, на этот раз на стене дома номер 76 по Аксбридж-роуд в районе Хэнуэлл на западе Лондона. На табличке просто написано, что именно там Джим Маршалл продал свой первый гитарный усилитель.

Маршалл торговал главным образом барабанами – он преподавал игру на ударных, – но также и усилителями Лео Фендера. Однако в начале 1960-х годов гитаристам хотелось уйти от тонкого и чистого звука этих усилителей. Барабаны становились все громче, и гитаристам нужны были усилители, способные перекрыть их грохот – и, пожалуй, выдать более интересное звучание. Маршалл решил подзаработать на конструировании и продаже собственных усилителей с характерным оглушительным звучанием, но у него для этого недоставало инженерных навыков. Ими не располагал и работавший с ним мастер по ремонту оборудования Кен Брэн. Но Брэн знал, к кому обратиться.

Брэн был радиолюбителем и состоял в Гринфордском радиоклубе, который собирался пятничными вечерами. Именно там он познакомился с 18-летним Дадли Крейвеном, стажером-электротехником из компании EMI Electronics, находившейся в Хейсе на западе Лондона. В клубе Крейвен слыл гением электроники. После одной из пятничных встреч Брэн уговорил его зайти в закусочную выпить кофе и там предложил ему помочь им с Маршаллом в осуществлении плана[151].

Крейвен обрадовался возможности подзаработать. Вечерами после учебы и работы он стал уходить в отцовский сарай, где пускал в ход свое знание электроники, чтобы усовершенствовать конструкцию усилителя Лео Фендера. В стремлении обеспечить трескучее перегруженное звучание на чудовищной громкости, какого жаждал Джим Маршалл, он заменял часть деталей и добавлял новые. В сентябре 1963 года он понял, что движется в верном направлении, когда его первый усилитель купил Пит Таунсенд, который вскоре основал группу The Who. Таунсенд заплатил Маршаллу 110 фунтов.

Комиссия Крейвена составила менее 0,5 % – всего 10 шиллингов. Маршалловское звучание, приведшее к рождению рок-музыки, появилось благодаря таланту молодого паренька, который просто хотел заработать денег на карманные расходы. Однако ни этого звучания, ни того, что привело к его появлению, – включая изобретение радио и электрификацию Америки – не было бы без комплексных чисел.

Квадратный корень из чего?

Мнимые, или комплексные, числа – вовсе не вымысел. На самом деле они оказали на нашу жизнь гораздо более значительное влияние, чем могло бы оказать нечто поистине мнимое. Без комплексных чисел, сыгравших важнейшую роль в подведении электричества к домам, заводам и серверным фермам, обеспечивающим работу интернета, современного мира просто не существовало бы. Впрочем, прежде чем погружаться в тему, нам, вероятно, стоит объяснить, что же такое комплексные числа.

Мы уже знаем, как возвести число в квадрат (умножить его на само себя), и знаем, что отрицательные числа при возведении в квадрат становятся положительными (как помните, минус на минус дает плюс). Следовательно, (–2) × (–2) = 4. Мы также знаем, что извлечение квадратного корня – это обратная операция по отношению к возведению в квадрат. Получается, что число 4 имеет два возможных квадратных корня: 2 и –2. Комплексное число появляется, когда мы пытаемся извлечь квадратный корень из –4.

В чем здесь вообще смысл? Если возвести число в квадрат, будь оно хоть положительным, хоть отрицательным, результат будет положительным. Следовательно, невозможно произвести обратную операцию для отрицательного числа. Несомненно, так и полагал Герон Александрийский, египетский архитектор, математические хитрости которого из книги “Стереометрия” подарили нам купол Софийского собора в Константинополе. В той же книге он объяснил, как найти объем усеченной квадратной пирамиды, то есть пирамиды с усеченной верхушкой. В одном из примеров он для этого вычел 288 из 225, после чего должен был извлечь квадратный корень из полученного числа. Но число это оказалось отрицательным: –63. Следовательно, ответом был √-63.

По какой-то причине – может, кто-то решил, что в расчеты вкралась ошибка, может, переписчик неправильно скопировал текст, а может, счел это абсурдным – из дошедших до нас списков видно[152], что Герон опустил знак минуса и просто извлек √63.

Квадратные корни из отрицательных чисел и есть комплексные, или мнимые, числа. Первым о том, что их не стоит оставлять без внимания, заговорил итальянский астролог Джероламо Кардано. Мы уже встречались с Кардано в главе об алгебре, и именно так, решая кубические уравнения, он и столкнулся с этой проблемой. Сначала он назвал такие числа “невозможными случаями”. В своей книге по алгебре “Великое искусство”, вышедшей в 1545 году, он привел пример, в котором попытался разделить 10 на два числа, при перемножении дающих 40. В процессе расчетов у него возникло выражение 5+√-15.

Кардано не смутила эта неожиданная встреча. Он даже снабдил ее комментарием. Но свою мысль он записал на латыни, и переводчики не могут однозначно сказать, что он имел в виду[153]. Одни считают, что он назвал это “ложным положением”. Другие полагают, что он написал о “воображаемом” числе. Третьи утверждают, что он указал на “невозможность” решения такой задачи. Один из его последующих комментариев о том, как действовать в такой ситуации, либо велит нам “покончить с муками разума”, либо сообщает, что “воображаемые элементы теряются”. В другом месте Кардано называет это “арифметической тонкостью, которая… столь же изящна, сколь бесполезна”. Он отмечает, что ситуация “поистине сложна… невозможно провести другие операции, которые проводятся с чисто отрицательными числами”. Под чисто отрицательными числами он понимает обыкновенные отрицательные числа, например –4. Отрицательные числа его не смущали, и он написал, что “√9 равняется либо +3, либо –3, ибо плюс [умноженный на плюс] или минус, умноженный на минус, дает плюс”. Он продолжил: “√9 – это не +3 и не –3, а некая малопонятная третья величина”. Очевидно, Кардано полагал, что квадратные корни из отрицательных чисел – нечто мудреное и абсурдное, но при этом понимал, что их существование невозможно отрицать и что математику следует с ними работать. Но сам он этим заниматься не стал: ни в одном из его более поздних сочинений не упоминаются квадратные корни из отрицательных чисел. Он оставил эту задачу на откуп своему соотечественнику Рафаэлю Бомбелли, который взялся за нее через пару десятков лет.

Как выразился сам Бомбелли, в 1572 году ему в голову пришла “шальная мысль”, что слагаемые в выражении 5+√-15 можно рассматривать как отдельные элементы. “Казалось, в основе этого лежит софистика, а не истина”, – отметил он, но все же осуществил задуманное. И мы поступаем так по сей день, поскольку этот метод работает.

Отдельные элементы Бомбелли мы называем действительными и мнимыми частями того, что в комбинации дает “комплексное число” (комплексное, как “военно-промышленный комплекс”, то есть предполагающее комбинацию – действительной и мнимой частей, – а не усложнение). Но давайте говорить начистоту. Если, вспоминая математику, мы и научились чему-то, так это тому, что все числа мнимые. Числа – это просто запись, помогающая нам с понятием “сколько”. В связи с этим называть квадратные корни из отрицательных чисел “мнимыми числами” – уничижительно и неразумно.

И все же следует понимать, что между ними есть разница. “Действительными” математики называют числа, которые знакомы вам лучше. Это “два” в сочетании “два яблока”, это 3,14… в пи, это различные дроби. Как положительные числа в некотором смысле дополняются отрицательными, так и действительные числа дополняются числами, которые нам приходится называть мнимыми. Они похожи на инь и ян, на орла и решку. И на самом деле они вовсе не мнимые.

Развивая свою “шальную мысль”, Бомбелли продемонстрировал, что числа нового типа играют собственную роль в реальном мире. Он взялся за кубическое уравнение, которое отчаялся решить Кардано: x3 = 15x + 4. В решении Кардано возникло выражение с квадратным корнем из –121, и ученый просто зашел в тупик. Бомбелли, однако, подумал, что можно попробовать применить к квадратному корню обычные правила арифметики. И он предположил, что √–121 эквивалентен √121×√–1, то есть 11×√–1.