Кошки, на первый взгляд, делают что-то другое, но делают это слишком быстро, чтобы процесс можно было рассмотреть невооруженным глазом. Стокер обратился за помощью к коллегам по МТИ Педро Реису, Сонхвану Чону и Джеффри Аристоффу и предложил изучить процесс лакания кошки при помощи самого старого и уважаемого из физических «кошачьих» методов — высокоскоростной фотографии. Сначала они терпеливо караулили Кутта-Кутту, чтобы снять, как она пьет, но затем перешли к съемке других домашних кошек, а со временем и львов, оцелотов, тигра и ягуара. Ученые дополнили свою коллекцию съемками представителей других видов кошачьих, которых обнаружили на YouTube.
Авторам удалось пронаблюдать неизвестную прежде замечательную тактику, которую применяют кошки при питье. У всех исследованных видов кошачьих язык лишь едва-едва касается поверхности воды, а затем стремительно отдергивается. Часть жидкости прилипает к языку кошки и при быстром отдергивании увлекается им, в результате чего в воздухе над поверхностью образуется тонкий столбик воды; кошка же схватывает этот зависший столбик, пока он не упал обратно в мисочку.
Кошка пьет, используя межмолекулярные силы в самой жидкости, благодаря которым некоторый объем жидкости увлекается за кончиком языка. Между силами инерции в жидкости и силой тяжести существует идеальное равновесие; ученым при помощи моделирования удалось продемонстрировать, что кошки лакают воду с такой скоростью, при которой к ним в рот попадает максимальное количество воды. Как и в задаче с рефлексом переворачивания, оказывается, что эволюция решила задачу по физике намного раньше, чем кто-либо из людей догадался о ее существовании.
Это исследование подтвердил, хотя и не без иронии, другой ученый. На просьбу прокомментировать эти результаты Стивен Фогель из Университете Дьюка сказал: «Теперь, когда меня ввели в курс дела, могу подтвердить: то, что эти люди описывают и объясняют, полностью согласуется с моими собственными, проводимыми между делом, наблюдениями лакания представителей кошачьих, которые содержатся в нашем учреждении»{14}.
После всех вложенных усилий команда исследователей из МТИ узнала, что данные о необычном способе питья, которым пользуются кошки, были доступны всем желающим уже несколько десятков лет благодаря новаторским фотографиям Гарольда Эджертона (1903–1990). Эджертон писал свою докторскую диссертацию в МТИ, где изучал использование высокоскоростных электронных вспышек при помощи специального устройства — стробоскопа — с целью увидеть быстро движущиеся объекты, такие как вращающиеся вентиляторы. Поняв, что при помощи цифровых вспышек фотографии можно делать быстрее, чем кто-либо мог вообразить, он принялся фотографировать все — от пуль, пронзающих яблоко, до спортсменов в движении, взрывов атомных бомб и того, что на самом деле не было, вероятно, лох-несским чудовищем{15}. Во время Второй мировой войны Эджертона призвали и поручили делать при помощи его молниеносной технологии ночные снимки оккупированной Европы с воздуха; занимаясь своим делом, он даже участвовал в нескольких опасных вылетах{16}. В 1950-е гг. Эджертон сотрудничал со знаменитым океанографом Жаком Ивом Кусто.
В 1940 г. Эджертона пригласили в Голливуд продемонстрировать разработанные им методы. Результатом сложившегося сотрудничества стал короткометражный документальный фильм 1940 г. «Быстрее мгновения ока», в который вошел короткий фрагмент съемки лакающей кошки. В сопроводительном тексте говорится, что кошка изгибает язык вниз, так что он образует как бы перевернутый ковшик, но сегодня мы ясно видим на пленке тот самый инерциальный эффект, который был представлен в 2010 г. Вполне закономерно, что Эджертон значительную часть работы с высокоскоростной фотографией проводил в МТИ — там же, где спустя почти 70 лет группа Стокера сделала свое открытие. Мало того, группа пользовалась оборудованием из Центра Эджертона при МТИ, где, если верить сайту института, «продолжает жить дух открытия Гарольда Эджертона» и «где мы предоставляем студентам возможность учиться на практике».
Эджертон и сам снимал падающих кошек. В 1930-е гг., когда он вместе с коллегой по МТИ Кеннетом Гермесхаузеном все еще активно продвигал свои методы в научном сообществе, Гарольд обнаружил, что кошачий рефлекс переворачивания в правильное положение — первоклассное средство для привлечения внимания. Их «кошачьи» фотографии появились в журнале
Нет никакого стыда в том, что вы или еще какой-то маленький мальчик не выяснили, как кошка переворачивается. Чтобы прояснить этот вопрос, потребовались ресурсы и возможности хорошей инженерной лаборатории, ум и талант двух изобретательных и трудолюбивых молодых ученых. Но совсем недавно фильм о том, как кошка переворачивается в воздухе, как пара мух стартует с поверхности, как канарейка взлетает, и о множестве других движений, слишком быстрых, чтобы их увидеть, которые производят живые существа, был показан в собрании Национальной академии наук в Кембридже, и ученейшие люди Америки на время прекратили обсуждение космических лучей, расширяющейся Вселенной и прочих столь же хитромудрых вещей, чтобы посмотреть на это и поаплодировать{17}.
Ниже вы можете видеть один из сделанных Эджертоном снимков падающей кошки. В повороте тела кошки видна часть того движения, о котором говорили Радемакер и тер Браак.
Язык кошки скрывает в себе еще больше сюрпризов. Все хозяева кошек знакомы с ощущением наждака при прикосновении кошачьего языка. Грубость поверхности кошачьего языка имеет огромное практическое значение. Однажды, когда докторантка Алексис Ноэль наблюдала, как ее кот Мёрфи лижет одеяло из микрофибры, она увидела, как он сначала застопорился в своем движении, но затем поднажал на язык и высвободился. Задумавшись над тем, почему язык вообще застрял на одеяле, Ноэль взяла образец тканей кошачьего языка и сделала его трехмерную модель при помощи компьютерной томографии. Рассматривая получившиеся изображения, она обнаружила, что язык кошки вовсе не похож на наждачную бумагу, зато снабжен серией гибких когтеобразных гребней, способных зацеплять и вытаскивать спутанные комочки из кошачьего меха. Вот как она это описывает:
Когда язык скользит по меху, крючочки цепляют спутанные комочки и мусоринки. Комочек тянет за крючок, и крючок поворачивается, медленно распутывая пух. Подобно когтям, передняя часть гребня на языке загнута и напоминает крючок. Так что, когда язык встречает катышек, он может за него зацепиться, в отличие от стандартных волосков щетки, которые просто сгибаются и соскальзывают с катышка{18}.
Ноэль представила полученные результаты на заседании секции динамики жидкостей Американского физического общества. Она включила в презентацию высокоскоростные фотографии умывания своей кошки, на которых видно, как она изгибает и скручивает язык, чтобы более эффективно распутывать любые встреченные катышки{19}.
Ноэль обнаружила на языке кошки еще один сюрприз. Когда она погрузила образец гребнистой поверхности в воду, то увидела, что крючочки на самом деле пустотелы и втягивают в себя жидкость посредством капиллярного действия. Этот механизм, утверждает она, позволяет кошке доставлять слюну глубоко в толщу меха, чтобы облегчить процесс чистки и распутывания. Ноэль подала патентную заявку на щетку для волос, которая работала бы на таком же принципе.
Изучение процессов лакания и умывания кошки может показаться легкомысленным и бестолковым занятием, но в обоих случаях исследователи предполагают, что их работы помогают понять, как можно создать совершенно новые типы гибких роботов. Мало того, кошачий рефлекс переворачивания в воздухе вызвал серьезный интерес специалистов-робототехников; подвижность животного стала своего рода идеалом и конечной целью в плане маневренности роботов.
10. Эра роботизированных кошек
В конце июля 1994 г. ученые из Университета Карнеги — Меллона отправились на Аляску с дерзкой миссией — проникнуть в кратер действующего вулкана и собрать данные. Но исследователи, действовавшие по поручению NASA, не собирались спускаться в кратер сами; туда предполагалось отправить «Данте II» — восьминогого автономного робота, который собирал бы образцы токсичных газов и составлял топографическую карту внутренности кратера при помощи лазеров. Робот, соединенный с управляющей станцией на гребне кратера шлейфом, должен был несколько дней ползти вниз, до дна, и примерно столько же обратно.
Миссия эта в основном оказалась успешной. «Данте II» спустился на дно, собрал нужные данные и начал двигаться в обратном направлении. Однако за время операции изменилась погода, и твердый заснеженный грунт превратился в ненадежную и скользкую грязь. На обратном пути наверх «Данте II» поскользнулся на склоне 30°, опрокинулся и застрял. Потребовалось несколько дней, чтобы вытащить из кратера робота, весившего примерно тонну. Первая попытка поднять его из грязи вертолетом не удалась, и это заставило геологов самим принять участие в спасательной операции, что, вероятно, обесценило, по крайней мере символически, идею отправить в такое опасное место робота. Ученые прикрепили к нему трос, который позволил вытащить робота из вулканической горячей точки, чтобы он мог теперь спокойно отдыхать в музее в качестве экспоната — с семью сломанными ногами и разбитым лазерным сканером{1}.
Нельзя сказать, что вариант, при котором робот споткнется, был совершенно неожиданным. Его заранее рассматривали и разбирали со всех возможных сторон — и очень этого боялись. Как сказал Джон Беарс — специалист по робототехнике из Университета Карнеги — Меллона: «В худших своих кошмарах мы видели, как одна из ног погружается в землю и просто не выходит обратно»{2}. «Данте II» был разработан с прицелом на
Дело было не в ограничениях конструкции «Данте II», которая на тот момент являлась суперсовременной. Робототехника с давних времен страдала от неспособности машин адаптироваться к сложным условиям среды. Какой-нибудь робот, с легкостью преодолевающий обстановку смоделированного офиса, где мебель имитируется простыми геометрическими фигурами, полностью теряется, оказавшись в сложной обстановке реального офиса.
Но время шло, и появлялись новые стратегии. Когда «Данте II» упал, специалисты по робототехнике как раз пробовали новый подход к конструированию машин; вдохновение в этом новом подходе они черпали из природы, ориентируясь на биологические системы. Эволюция давно уже решила многие из задач, которыми занимаются сегодня создатели роботов, поэтому естественно было обратиться за готовыми решениями к продуктам эволюции. Насекомое, к примеру, может иметь почти такую же форму, что и «Данте II», но при этом оно способно преодолевать чрезвычайно сложный рельеф и даже адаптироваться к потере одной или нескольких конечностей. И любому роботу, предназначенному для функционирования в опасной среде, придется научиться имитировать такое умение. Возникшее при этом новое поле исследований на стыке биологии и робототехники получило название