Страх физики

22
18
20
22
24
26
28
30

Существует ещё один способ описания этого явления. Свет, как я уже отмечал ранее, представляет собой нечто иное, как электромагнитные волны. Покачивание заряда или периодическое изменение электрического или магнитного полей порождает электромагнитные волны. Электромагнитные волны распространяются со скоростью света, потому что этого требуют законы электромагнетизма, но именно по этой причине, несмотря на то, что электромагнитная волна может переносить энергию, с ней невозможно связать никакую массу. На квантовом уровне электромагнитная волна представляется набором частиц, называемых фотонами, которые также не имеют массы.

Магнитное поле не может проникнуть внутрь сверхпроводника, потому что фотоны, соответствующие на микроуровне этому макроскопическому полю, пытаясь пройти сквозь строй когерентных электронов, изменяют свои свойства. Они начинают вести себя так, как если бы они имели массу! Ситуация аналогична попытке проехать на роликах по песку. Пока вы едете по асфальту, ролики катятся свободно, но стоит вам съехать на рыхлый песок, как колёса начинают в нём вязнуть. Если кто-нибудь будет вас толкать, то он почувствует, что вы как будто стали гораздо тяжелее, съехав с асфальта на песок. Примерно то же самое происходит и с фотонами, которым гораздо труднее двигаться в сверхпроводнике из-за «налипшей» на них эффективной массы. В результате фотоны не проникают вглубь сверхпроводника, и магнитное поле остаётся только на его поверхности.

Наконец мы готовы вернуться к Большому адронному коллайдеру. Как я сказал, этот монстр был построен для того, чтобы узнать, почему все элементарные частицы имеют массу. Прочитав предыдущие несколько страниц, вы можете подумать, что эти две темы никак друг с другом не связаны, но на самом деле вполне вероятно, что решение загадки масс элементарных частиц аналогично причине, по которой сверхпроводящие материалы выталкивают магнитные поля.

Я уже говорил, что теория электромагнетизма послужила моделью для теории слабого взаимодействия, отвечающего за протекание ядерных реакций, обеспечивающих светимость солнца или дающих энергию атомным электростанциям. Электромагнитное и слабое взаимодействия почти идентичны, за исключением одного важного математического различия. Фотон, представляющий собой квантовую сущность электромагнитных волн, является безмассовым. Частицы, ответственные за передачу слабого взаимодействия, наоборот, массивны. По этой причине слабое взаимодействие между протонами и нейтронами в ядре является настолько короткодействующим, что никогда не простирается за пределы ядра, в то время как электрические и магнитные силы являются дальнодействующими и действуют на больших расстояниях.

Как только указанный факт был обнаружен, физики тут же принялись выяснять, чем может быть вызвано это различие. Возможным ответом может служить механизм, аналогичный тому, который отвечает за странное поведение сверхпроводников. Я ранее рассказывал о тех странных явлениях, которые могут происходить в мире элементарных частиц, совместно описываемом специальной теорией относительности и квантовой механикой. В частности, пустое пространство в таком мире никогда не бывает по-настоящему пустым. Оно заполнено виртуальными частицами, которые постоянно появляются и исчезают слишком быстро, чтобы быть обнаруженными. В главе 1 я упомянул, что процессы постоянного рождения и уничтожения виртуальных частиц приводят к вполне наблюдаемым эффектам, таким как лэмбовский сдвиг.

Настало время собрать все части пазла вместе. Если виртуальные частицы ответственны за тонкие, но вполне измеримые аномалии в физических процессах, то не могут ли они нести ответственность и за какие-либо свойства реальных элементарных частиц?

Представьте себе, что в природе существует некий тип частиц, которые очень сильно взаимодействуют между собой. Если пара таких виртуальных частиц рождается из вакуума, то в силу закона сохранения энергии они должны быстро исчезнуть. Однако если эти частицы притягиваются друг к другу, то энергетически выгодным может оказаться рождение не одной, а сразу двух пар частиц. Но если две пары лучше, чем одна, то почему не три? И так далее. Это может привести к тому, что суммарная энергия, необходимая для рождения когерентного ансамбля таких частиц, будет тем меньше, чем больше частиц в ансамбле. Тогда вполне возможна ситуация, когда всё «пустое» пространство окажется заполненным когерентным конденсатом подобных частиц, находящихся в одном квантовом состоянии.

Каким будет эффект такого явления? Понятно, что не следует ожидать рождения реальных частиц в пустом пространстве, потому что для рождения одной реальной частицы может потребоваться очень большая энергия, точно так же, как требуется большая энергия для выбивания одного электрона из когерентного ансамбля в сверхпроводнике. Вместо этого можно ожидать изменения свойств других реальных частиц, движущихся сквозь кипящее виртуальное море.

Можно построить простую модель, которая бы объясняла, почему это виртуальное море взаимодействует с частицами-переносчиками слабого взаимодействия, называемыми W- и Z-бозонами, но не взаимодействует с фотонами. В такой модели W- и Z-бозоны вели бы себя так, как если бы они обладали большой массой, а фотоны остались бы безмассовыми. Это позволило бы утверждать, что реальная причина различия между слабым и электромагнитным взаимодействием кроется не во внутренней природе частиц, а в универсальном когерентном виртуальном море, по которому перемещаются переносчики взаимодействия.

Эта гипотетическая аналогия между тем, что происходит с магнитным полем в сверхпроводнике, и тем, что определяет основные свойства материи, может показаться слишком фантастической, чтобы быть правдой, но у неё есть одно несомненное достоинство: она правильно описывает результаты всех экспериментов, поставленных к настоящему времени. В 1984 году были экспериментально обнаружены W- и Z-бозоны. Их характеристики находятся в идеальном согласии с предсказаниями, базирующимися на описанном механизме.

Тогда, наверное, имеет смысл идти дальше? Как насчёт масс обычных частиц, таких как протоны и электроны? Можем ли мы надеяться описать и их как результат взаимодействия с когерентным квантовым морем, заполняющим пустое пространство? Если это так, то в основе происхождения масс всех частиц должен лежать тот же самый механизм. Как это выяснить? Очень просто: предположив существование частиц, называемых бозонами Хиггса — в честь шотландского физика Питера Хиггса, впервые предсказавшего их существование в 1964 году, — образующих аналогичное виртуальное море. Одной из приоритетных задач БАК и было обнаружение бозонов Хиггса, успешно состоявшееся в 2012 году. За это предсказание Питер Хиггс и его коллега Франсуа Энглер в 2013 году были удостоены Нобелевской премии.

Следует заметить, что описанная картина вовсе не требует, чтобы бозон Хиггса был фундаментальной элементарной частицей, как электрон или кварк. В итоге может оказаться, что он состоит из других частиц, объединяющихся в пары, подобно тому как спариваются электроны, образуя когерентный конденсат, ответственный за сверхпроводимость. Почему вообще существует бозон Хиггса? Может быть, имеется более фундаментальная теория, которая объясняет его существование, а заодно и существование электронов, кварков, фотонов, W- и Z-бозонов? Мы сможем ответить на эти вопросы, только ставя всё новые и новые эксперименты.

Я лично не представляю, как можно не испытывать восторга перед этим поразительным дуализмом между физикой сверхпроводимости и возможностью объяснения происхождения массы во Вселенной. Но интеллектуальная оценка чего-то и желание заплатить реальные деньги за то, чтобы это что-то изучить, это разные вещи. Стоит напомнить, что БАК строился более десяти лет и обошёлся более чем в 10 миллиардов долларов. В действительности, вопрос о том, стоило ли строить БАК, это не научный вопрос — ни один учёный ни на минуту не усомнится в необходимости такой машины. Это вопрос политический: можем ли мы позволить себе делать такие вещи приоритетными в условиях ограниченных ресурсов?

Как я подчеркнул в начале этой книги, на мой взгляд, искать оправдания для занятия наукой и создания таких дорогостоящих инструментов, как БАК, следует не в технологической, а в культурной области. Мы ведь обычно не обсуждаем особенности устройства канализации в Древней Греции, но мы помним о научных и философских достижениях античных учёных. Они отфильтровываются сегодняшней массовой культурой, ложась в основания общественных институтов и методов, используемых для обучения нашей молодёжи. Обнаружение частицы Хиггса не изменит нашу повседневную жизнь. Но я уверен, что картина, частью которой она является, окажет огромное влияние на будущие поколения, пробуждая в некоторых молодых людях жгучее любопытство и заставляя их выбирать научную карьеру.

Когда основателя и первого директора Лаборатории Ферми Роберта Вильсона спросили, поможет ли строительство крупнейшего в мире ускорителя элементарных частиц повысить обороноспособность США, он ответил: «Нет. Но это поможет сохранить за США статус страны, которую стоит защищать».

Глава 4.

СКРЫТАЯ РЕАЛЬНОСТЬ

Мы не оставим поиск, Мы придём в конце В то место, из которого ушли, — Но место не узнаем. Томас Стернз Элиот, «Четыре квартета, Литтл Гиддинг» (Перевод В. И. Постникова) 

Вы просыпаетесь однажды морозным утром и смотрите в окно, но не узнаёте знакомый пейзаж. Мир полон нечётких узоров. В какой-то момент вы вдруг осознаёте, что смотрите на морозный узор на стекле, причудливым образом преломляющий и рассеивающий солнечный свет.

Психологи называют это ага-переживанием. У мистиков, вероятно, имеется для него другое название. Внезапное изменение мира, этот новый гештальт, когда разрозненные, на первый взгляд, факты соединяются вместе, чтобы сформировать новую картину, заставляя вас увидеть старые вещи в совершенно новом свете, играет важнейшую роль в развитии физики. В какой-то момент, возвращаясь к уже давно решённой задаче, мы обнаруживаем что-то, на что раньше не обращали внимания: новый пласт, скрываемый под покровом обманчивой простоты, новые связи между, казалось бы, не связанными друг с другом вещами.

Все важнейшие достижения в физике XX века обязаны именно таким озарениям: от поразительных открытий Эйнштейна, касающихся пространства, времени и устройства Вселенной, до моделирования процесса кипения овсяной каши. При обсуждении этой «скрытой реальности» я не хотел бы увязнуть в философских спорах о совершенстве и бесконечности природы. Дискуссии подобного рода лишь укрепляют меня в моём отношении к философии, которое лучше всего сформулировал один из крупнейших философов XX века Людвиг Витгенштейн: «Большинство предложений и вопросов, трактуемых как философские, не ложны, а бессмысленны»[15].