Страх физики

22
18
20
22
24
26
28
30

Рассмотрим, например, ту Вселенную, в которой мы живём и которая, как нам представляется, является плоской. Если она обладает нулевой полной суммой потенциальной и кинетической энергии вещества, но дополнительно обладает ещё какой-то энергией вакуума, то она будет расширяться вечно, и скорость её расширения будет увеличиваться со временем. Что из этого следует? Если расширение происходит с ускорением, то на это должна затрачиваться дополнительная энергия. Но дополнительная энергия должна откуда-то закачиваться в расширяющуюся Вселенную, чтобы поддерживать ускоренное расширение, несмотря на то, что полная энергия вещества в ней остаётся нулевой…

В конце концов закончится история Вселенной Большим коллапсом или она рассеется в пространстве, зависит от её энергии, неважно: экзотической или какой-то иной. Ответ на один из самых древних вопросов человеческого существования: «Чем всё закончится?» — может быть получен путём измерения скорости расширения видимой части Вселенной, определения её общей массы и, наконец, выяснения природы и вычисления общего количества возможной «тёмной энергии». Мы не будем знать, в каких единицах следует считать количество энергии, до тех пор, пока не выясним характер и природу таинственной тёмной энергии, составляющей в настоящее время 70% всей энергии Вселенной. Но в конечном итоге судьба Вселенной прояснится с помощью простого бухгалтерского подсчёта её энергии.

* * *

Рука об руку с инвариантностью относительно сдвига во времени идёт ещё одна важная симметрия. Точно так же, как законы природы не зависят от того, когда вы их проверяете, они не должны зависеть от того, где вы их проверяете. Представьте себе кошмар студентов, если бы законы физики зависели от того, в каком университете им читается курс, и более того, от того, в какой аудитории физического факультета им пришлось бы сдавать экзамен!

Следствием этой симметрии является существование ещё одной сохраняющейся физической величины, называемой импульсом, с которой большинство из вас знакомы благодаря явлению инерции, отвечающей за то, что тело, предоставленное само себе, сохраняет состояние покоя или равномерного и прямолинейного движения. Закон сохранения импульса фактически тождественен первому закону Ньютона. Декарт назвал импульс «количеством движения» и предложил, что это количество было зафиксировано во Вселенной Богом в акте творения. Сегодня мы понимаем, что это закон сохранения импульса обязан своим существованием тому, что законы физики не изменяются при перемещении из одного места Вселенной в другое.

Но так было не всегда. В 1930-х годах был период, когда казалось, что придётся отказаться от закона сохранения импульса, по крайней мере, для элементарных частиц, и вот почему. Закон сохранения импульса говорит нам, что если система находится в состоянии покоя и вдруг распадается на несколько частей, например если взрывается бомба, то все осколки бомбы не могут лететь в одном направлении. Это и так интуитивно понятно, но на основании закона сохранения импульса это можно доказать строго.

Если первоначальный импульс равен нулю, а у системы, находящейся в состоянии покоя, он равен нулю, то он должен оставаться нулевым, пока на систему не подействует какая-нибудь внешняя сила. Но взрыв происходит из-за действия внутренних сил, а не внешних, поэтому единственный способ обеспечить полный нулевой импульс — это потребовать, чтобы все осколки разлетались равномерно по разным направлениям. Если частица распадается на две одинаковые части, то эти части должны разлетаться строго в противоположных направлениях с одинаковыми скоростями. Если же распад происходит на две разные частицы, то их скорости тоже будут разными, но разлетаться они всё равно будут в противоположных направлениях.

И вот, когда в 1932 году был открыт нейтрон, оказалось, что в свободном состоянии он нестабилен и распадается примерно через десять минут. Нейтрон распадается на протон и электрон, которые могут быть обнаружены, например, по следам, которые они оставляют в камере Вильсона. И тут обнаружилось, что при распаде покоящегося нейтрона образующиеся в результате протон и электрон разлетаются не в противоположные стороны, как того требует закон сохранения импульса, а примерно так, как показано на рисунке:

Таким образом, встал вопрос: применим ли закон сохранения импульса к элементарным частицам? В конце концов, никто в то время не представлял себе характера сил, отвечающих за распад нейтрона. Но мысль о том, что придётся пожертвовать законом сохранения импульса, а заодно и законом сохранения энергии, который, судя по всему, тоже нарушался в этом процессе, была настолько чудовищной, что один из выдающихся физиков того времени Вольфганг Паули предложил другой вариант. Он предположил, что при распаде нейтрона, помимо протона и электрона, образуется ещё одна частица. Эта частица должна быть нейтральной, во-первых, потому что она не оставляет след в камере Вильсона, а во-вторых, потому что этого требует закон сохранения электрического заряда. К тому же эта частица должна быть очень лёгкой, потому что сумма масс протона и электрона почти равна массе нейтрона. Итальянский физик Энрико Ферми предложил назвать новую частицу нейтрино, что на итальянском языке означало «нейтрончик». Это та самая частица, о которой я рассказывал ранее в связи с ядерными реакциями, обеспечивающими светимость Солнца. Если в процессе распада нейтрона действительно образуется нейтрино, то можно предсказать направление, в котором эта частица должна вылетать, чтобы скомпенсировать суммарный импульс протона и электрона:

Вы могли бы возразить, что «изобретение» незамеченной до сих пор частицы выглядит легкомысленным поступком, но Паули был не тем человеком, которого можно было бы обвинить в легкомысленности. Он к тому времени уже сделал важный вклад в физику, известный как «принцип запрета Паули», определяющий особенности поведения электронов в атомах, благодаря которым возможно существование известных нам химических элементов и их соединений. Этот австрийский гений порой приводил в трепет своих коллег. Всем была известна его привычка вскакивать с места во время семинара и выхватывать мел из рук докладчика, если, по его мнению, докладчик нёс чепуху. Кроме того, идея отказа от законов сохранения импульса и энергии, которые прекрасно работали во всех прочих разделах физики, представлялась гораздо более радикальным шагом в отношении творческого плагиата, о котором я рассказывал ранее, чем введение новой частицы. Так нейтрино прописался в физике задолго до того, как он был экспериментально обнаружен в 1956 году.

Сегодня, конечно, мы бы с ещё большей подозрительностью отнеслись к идее отказа от закона сохранения импульса, даже в микромире, потому что считаем его следствием одной из фундаментальных симметрии природы. До тех пор, пока не обнаружится новый закон природы, который каким-то образом будет зависеть от положения в пространстве, мы можем рассчитывать на незыблемость закона сохранения импульса. И конечно же, он выполняется не только на субатомном масштабе. Этот закон обуславливает наше понимание таких макроскопических явлений, как футбол, бейсбол, катание на коньках или вождение автомобиля. Что бы ни происходило внутри изолированной системы, на которую не действуют никакие внешние силы, суммарный импульс всех составных частей этой системы всегда остаётся неизменным в течение неограниченного времени.

Где же найти такую изолированную систему? Ответ: везде. Всё зависит только от вашего выбора! Есть один мультфильм, в котором двое учёных спорят перед доской, исписанной уравнениями, и один говорит другому: «Да, но я не думаю, что помещение этих уравнений в рамку делает их единой теорией». Однако в этой шутке есть доля истины. Всё, что необходимо сделать, чтобы получить изолированную систему, это нарисовать вокруг неё воображаемую рамку. Вся хитрость заключается в правильном выборе этой рамки.

Рассмотрим следующий пример. Автомобиль врезается в кирпичную стену. Сначала нарисуйте рамку вокруг автомобиля и назовите то, что находится внутри, изолированной системой. Первоначально автомобиль движется с постоянной скоростью, он не разгоняется и не тормозит. Внезапно на его пути оказывается стена, которая останавливает его. Так как импульс автомобиля при столкновении уменьшается до нуля, стена должна приложить силу к выбранной вами системе, то есть к автомобилю. Стене придётся приложить тем большую силу, чем больше была первоначальная скорость автомобиля.

Теперь нарисуйте рамку вокруг автомобиля и стены. В этой новой системе никакие внешние силы уже не действуют. Единственное, что действует на автомобиль, это стена, и единственное, что действует на стену, это автомобиль. Что происходит с этой точки зрения, когда автомобиль врезается в стену? В отсутствие внешних сил полный импульс системы должен сохраняться, то есть оставаться постоянным.

Изначально автомобиль двигался и имел некоторый импульс, а стена находилась в состоянии покоя, и её импульс был равен нулю. После аварии и автомобиль и стена покоятся. Куда делся импульс? Факт, что ситуация выглядит так, будто импульс бесследно исчез, говорит нам о том, что в системе до сих пор чего-то не хватает, а именно стена и автомобиль не являются изолированной системой. Стена стоит на Земле. Понятно, что импульс может сохраниться в этом столкновении, только если сама Земля примет на себя импульс, которым первоначально обладал автомобиль. И действительно, настоящая изолированная система состоит из автомобиля, стены и Земли. Поскольку Земля обладает несравнимо большей массой, чем автомобиль, ей не нужно двигаться с заметной скоростью, чтобы поглотить его импульс, тем не менее Земля пусть и на ничтожную величину, но изменит скорость своего движения. Так что в следующий раз, когда кто-то скажет вам, что он сдвинул Землю, будьте уверены: он на самом деле это сделал!

* * *

Поиск симметрии является мощным движителем физики. Действительно, все скрытые реальности, о которых пойдёт речь в последней главе, связаны с различными симметриями Вселенной. Те симметрии, которые я уже описал, относящиеся к сохранению энергии и импульса, называются пространственно-временными симметриями по той очевидной причине, что они отражают неизменность физических законов относительно пространства и времени и тем самым отличаются от прочих симметрии. Пространственно-временные симметрии неразрывно связаны со специальной теорией относительности, которая, объединяя пространство и время, связывает их в единый пространственно-временной континуум, что приводит к появлению новых симметрии, отсутствующих при рассмотрении пространства и времени по отдельности. Одной из таких новых пространственно-временных симметрии является инвариантность скорости света.

Инвариантность законов физики относительно перехода из одной движущейся системы в другую в теории относительности достигается путём установления новых отношений между пространством и временем. Новая, четырёхмерная, пространственно-временная «длина» остаётся неизменной при переходе от равномерно движущейся системы к неподвижной, так же как обычная трёхмерная длина остаётся неизменной при повороте. Эта новая симметрия возможна только в том случае, если пространство и время связаны друг с другом. Таким образом, вместо чистого сдвига в пространстве и чистого сдвига во времени, инвариантность которых отвечает за сохранение импульса и сохранение энергии, мы должны ввести что-то новое, сохраняющее инвариантность при сдвиге в четырёхмерном пространстве-времени.

Таким образом, в теории относительности сохранение энергии и сохранение импульса оказываются не отдельными независимыми законами, а соединяются в новый единый закон сохранения энергии-импульса. Сохранение этой новой величины, требующей переопределения прежних понятий энергии и импульса, использовавшихся в теории Ньютона, является следствием новой симметрии, в которой пространство и время связаны друг с другом. В этом смысле специальная теория относительности сообщает нам нечто новое: пространство-время таково, что мы не можем обеспечить сохранение энергии без сохранения импульса, и наоборот.

Существует ещё одна пространственно-временная симметрия, о которой я пока упомянул только вскользь. Она связана с симметрией, приводящей к сохранению энергии-импульса в специальной теории относительности, но гораздо лучше знакома нам, поскольку проявляется и в трёхмерном пространстве. Это симметрия относительно вращения.

Я уже описывал ситуацию, в которой различные наблюдатели видят различную длину проекции линейки, в зависимости от того, как эта линейка повёрнута относительно экрана, но при этом длина самой линейки остаётся неизменной. Независимость физических законов от того, в какую сторону повёрнута лаборатория, является проявлением этой важнейшей симметрии природы. Мы не ожидаем, например, что природа предпочитает какое-то одно направление другим. Все направления должны быть равноправны в отношении основных законов природы.

Тот факт, что физические законы инвариантны относительно поворотов, означает, что существует какая-то сохраняющаяся величина, связанная с этой симметрией. Сохранение импульса связано с инвариантностью законов природы относительно сдвига в пространстве, в то время как наша новая величина связана с инвариантностью законов природы относительно поворота на произвольный угол. Эта величина называется моментом импульса, или, для краткости, просто моментом.